Skip to main content

On plane oscillations of a pendulum with variable length suspended on the surface of a planet’s satellite

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The problem of planar oscillations of a pendulum with variable length suspended on the Moon’s surface is considered. It is assumed that the Earth and Moon (or, in the general case, a planet and its satellite, or an asteroid and a spacecraft) revolve around the common center of mass in unperturbed elliptical Keplerian orbits. We discuss how the change in length of a pendulum can be used to compensate its oscillations. We wrote equations of motion, indicated a rule for the change in length of a pendulum, at which it has equilibrium positions relative to the coordinate system rotating together with the Moon and Earth. We study the necessary conditions for the stability of these motions. Chaotic dynamics of the pendulum is studied numerically and analytically.

This is a preview of subscription content, access via your institution.


  1. Pearson, J., Anchored lunar satellites for cislunar transportation and communication, J. Astronaut. Sci., 1979, vol. 27, no. 1, pp. 39–62.

    ADS  Google Scholar 

  2. Beletskii, V.V. and Levin, E.M., Mechanics of a lunar tether system, Kosm. Issled., 1982, vol. 20, no. 5, pp. 760–764.

    ADS  Google Scholar 

  3. Levin, E., Dynamic Analysis of Space Tether Missions, vol. 126 of Adv. Astronaut. Sci., 2007, San Diego, CA: AAS Publ. Office.

    Google Scholar 

  4. Beletsky, V.V. and Levin, E.M., Dynamics of Space Tether Systems, vol. 83 of Adv. Astronaut. Sci, 1993, San Diego, CA: AAS Publ. Office.

    Google Scholar 

  5. Burov, A.A. and Kosenko, I.I., Relative equilibria of an orbital station in the vicinity of triangle libration points, Dokl. Akad. Nauk, 2007, vol. 416, no. 3, pp. 335–337.

    MathSciNet  Google Scholar 

  6. Burov, A.A., Kononov, O.I., and Guerman, A.D., Relative equilibria of a moon-tethered spacecraft, Adv. Astronaut. Sci., 2011, vol. 136, pp. 2553–2562.

    Google Scholar 

  7. Burov, A.A., Kosenko, I.I., and Guerman, A.D., Dynamics of a moon-anchored tether with variable length, Adv. Astronaut. Sci., 2012.

    Google Scholar 

  8. Schiehlen, W., Über die Lagestabilisirung künstlicher Satelliten auf elliptischen Bahnen, Doctoral (Eng.) Dissertation, Stuttgart: Technische Hochschule, 1966.

    Google Scholar 

  9. Schiehlen, W., Über den Drallsatz für Satelliten mit im Innern bewegten Massen, Z. Angew. Math. Mech., 1966, vol. 46 (special edition), pp. T132–T134.

    Google Scholar 

  10. Schiehlen, W. and Kolbe, O., Gravitationsstabilisierung von Satelliten auf elliptischen Bahnen, Ing.-Arch., 1969, vol. 38, no. 6, pp. 389–399.

    MATH  Google Scholar 

  11. Sarychev, V.A., Issues of Orientation for Satellites, Itogi Nauki Tekh., Ser.: Issled. Kosm. Prostr., Moscow: available from VINITI, 1978, no. 11.

    Google Scholar 

  12. Polyanskaya, I.P., Oscillations of a satellite with compensating devices in elliptical orbit, Kosm. Issled., 1982, vol. 20, no. 5, pp. 674–681. [Cosmic Research, p. 474].

    Google Scholar 

  13. Burov, A.A., Oscillations of a vibrating dumbbell in elliptical orbit, Dokl. Akad. Nauk, 2011, vol. 437, no. 2, p. 186.

    MathSciNet  Google Scholar 

  14. Burov, A.A. and Kosenko, I.I., Planar oscillations of a body with variable mass distribution in elliptical orbit, Dokl. Akad. Nauk, 2011, vol. 440, no. 6, pp. 760–764.

    MathSciNet  Google Scholar 

  15. Djebli, A., El Bakkali, L., and Pascal, M., On fast retrieval laws for tethered satellite systems, Acta Astronaut., 2002, vol. 50, no. 8, pp. 461–470.

    Article  ADS  Google Scholar 

  16. Djebli, A., Pascal, M., and El Bakkali, L., Laws of deployment/retrieval in tether connected satellites systems, Acta Astronaut., 1999, vol. 45, no. 2, pp. 61–73.

    Article  ADS  Google Scholar 

  17. Djebli, A., Pascal, M., and El Bakkali, L., On deployment dynamics of tethered satellite systems, Revue de Mécanique Appliquée et Théorique, 2000, vol. 1, no. 1, pp. 13–39.

    Google Scholar 

  18. Pascal, M., Djebli, A., and El Bakkali, L., A new deployment/retrieval scheme for a tethered satellite system, intermediate between the conventional scheme and the crawler scheme, J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 689–696.

    Article  MathSciNet  Google Scholar 

  19. Djebli, A. and Pascal, M., A new method for the orbital modification of a tether connected satellite system, Acta Mechanica, 2004, vol. 167, nos. 1–2, pp. 113–122.

    Article  MATH  Google Scholar 

  20. Mantri, P., Mazzoleni, A.P., and Padgett, D.A., Parametric study of tethered satellite systems, J. Spacecraft and Rockets, 2007, vol. 44, no. 2, pp. 421–424.

    ADS  Google Scholar 

  21. Wong, B. and Misra, A., Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points, Acta Astronaut., 2008, vol. 63, nos. 11–12, pp. 1178–1187.

    Article  ADS  Google Scholar 

  22. Pizarro-Chong, A. and Misra, A.K., Dynamics of multi-tethered satellite formations containing a parent body, Acta Astronaut., 2008, vol. 63, nos. 11–12, pp. 1188–1202.

    Article  ADS  Google Scholar 

  23. Guerman, A.D., Equilibria of muitibody chain in orbit plane, J. Guidance, Control and Dynamics, 2003, vol. 26, no. 6, pp. 942–948.

    Article  ADS  Google Scholar 

  24. Guerman, A.D., Spatial equilibria of muitibody chain in a circular orbit, Acta Astronaut., 2006, vol. 58, no. 1, pp. 1–14.

    Article  ADS  Google Scholar 

  25. Guerman, A.D., Smirnov, G.V., Paglione, P., and Seabra, A.M., Stationary configurations of tetrahedral tethered satellite formation, J. Guidance, Control and Dynamics, 2008, vol. 31, no. 2, pp. 424–428.

    Article  ADS  Google Scholar 

  26. Burov, A.A., Guerman, A.D., and Sulikashvili, R.S., Relative equilibria of a tetrahedral structure with rigid and tethered elements, Adv. Astronaut. Sci., 2008, vol. 129, pp. 1665–1674.

    Google Scholar 

  27. Burov, A.A., German, A.D., and Sulikashvili, R.S., On orbital motion of a tetrahedral gyrostat, Prikl. Mat. Mekh., 2010, vol. 74, no. 4, pp. 594–609.

    Google Scholar 

  28. Burov, A.A., Guerman, A.D., and Sulikashvili, R.S., Dynamics of a tetrahedral satellite-gyrostat, AIP Conference Proceeding: Numerical Analysis and Applied Mathematics, American Institute of Physics, 2010, vol. 1281, pp. 465–468.

    Article  ADS  Google Scholar 

  29. Burov, A.A., German, A.D., and Sulikashvili, R.S., Established motion of gyrostats with equal moments of inertia in a central force field, Prikl. Mat. Mekh., 2011, vol. 75, no. 5, pp. 738–744.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. A. Burov.

Additional information

Original Russian Text © A.A. Burov, A.D. German, I.I. Kosenko, 2014, published in Kosmicheskie Issledovaniya, 2014, Vol. 52, No. 4, pp. 307–312.

According to the author personal communication.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burov, A.A., German, A.D. & Kosenko, I.I. On plane oscillations of a pendulum with variable length suspended on the surface of a planet’s satellite. Cosmic Res 52, 289–294 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Chaotic Dynamic
  • Relative Equilibrium
  • Cosmic Research
  • Libration Point
  • Elliptical Orbit