Skip to main content
Log in

Quaternion regularization and trajectory motion control in celestial mechanics and astrodynamics: II

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Problems of regularization in celestial mechanics and astrodynamics are considered, and basic regular quaternion models for celestial mechanics and astrodynamics are presented. It is shown that the effectiveness of analytical studies and numerical solutions to boundary value problems of controlling the trajectory motion of spacecraft can be improved by using quaternion models of astrodynamics. In this second part of the paper, specific singularity-type features (division by zero) are considered. They result from using classical equations in angular variables (particularly in Euler variables) in celestial mechanics and astrodynamics and can be eliminated by using Euler (Rodrigues-Hamilton) parameters and Hamilton quaternions. Basic regular (in the above sense) quaternion models of celestial mechanics and astrodynamics are considered; these include equations of trajectory motion written in nonholonomic, orbital, and ideal moving trihedrals whose rotational motions are described by Euler parameters and quaternions of turn; and quaternion equations of instantaneous orbit orientation of a celestial body (spacecraft). New quaternion regular equations are derived for the perturbed three-dimensional two-body problem (spacecraft trajectory motion). These equations are constructed using ideal rectangular Hansen coordinates and quaternion variables, and they have additional advantages over those known for regular Kustaanheimo-Stiefel equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chelnokov, Yu.N., Quaternion regularization in astrodynamics and trajectory motion control, Vestnik Nizhegorod. Univ. im. N.I. Lobachevskogo, 2011, no. 4 (5), pp. 2583–2585.

    Google Scholar 

  2. Chelnokov, Yu.N., Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. I, Kosm. Issled., 2013, vol. 51, no. 5, p. 389–401. [Cosmic Research, pp. 353–364].

    MathSciNet  Google Scholar 

  3. Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics: Basic Problems and Methods), Moscow: Nauka, 1968.

    Google Scholar 

  4. Abalakin, V.K., Aksenov, E.P., Grebenikov, E.A., Demin, V.G., and Ryabov, Yu.A., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike (Reference Manual on Celestial Mechanics and Astrodynamics), Moscow: Nauka, 1976.

    Google Scholar 

  5. Deprit, A., Ideal frames for perturbed Keplerian motions, Celestial Mechanics, 1976, vol. 13, no. 2, pp. 253–263.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Brumberg, V.A., Analiticheskie algoritmy nebesnoi mekhaniki (Analytical Algorithms of Celestial Mechanics), Moscow: Nauka, 1980.

    Google Scholar 

  7. Bragazin, A.F., Branets, V.N., and Shmyglevskii, I.P., Description of orbital motion using quaternions and velocity parameters, in Ann. dokladov shestogo Vsesoyuznogo s’ezda po teoret. i prikladnoi mekhanike (Abstracts of Reports at the 6th All-Union Congress on Theoret, and Applied Mechanics), Tashkent: Fan, 1986, p. 133.

    Google Scholar 

  8. Branets, V.N. and Shmyglevskii, I.P., Vvedenie v teoriyu besplatformennykh inertsial’nykh navigatsionnykh sistem (Introduction to Theory of Platformless Inertial Navigation Systems), Moscow: Nauka, 1992.

    Google Scholar 

  9. Il’in, V.A. and Kuzmak, G.V., Optimal’nye perelety kosmicheskikh apparatov (Optimal Transfers of Spacecraft), Moscow: Nauka, 1976.

    Google Scholar 

  10. Branets, V.N., and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Application of Quaternions in Problems of Solid Body Orientation), Moscow: Nauka, 1973.

    MATH  Google Scholar 

  11. Chelnokov, Yu.N., Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya: Geometriya i kinematika dvizheniya (Quaternion and Bi-Quaternion Models and Methods of Solid Body Mechanics and Their Application: Geometry and Kinematics of Motion), Moscow: Fizmatlit, 2006.

    Google Scholar 

  12. Lur’e, A.I., Analiticheskaya mekhanika (Analytical Mechanics), Moscow: Fizmatgiz, 1961.

    Google Scholar 

  13. Chelnokov, Yu.N., Kvaternionnye metody v zadachakh vozmushchennogo tsentral’nogo dvizheniya material’noi tochki. Ch. 1: Obshchaya teoriya. Prilozheniya k zadache regulyarizatsii i k zadache o dvizhenii ISZ (Quaternion Methods in Problems of Perturbed Central Motion of a Material Point. Part 1: General Theory. Applications to Problem of Regularization and Problem of the Earth’s Satellite Motion), Available from VINITI, 1985, no. 8628-B.

    Google Scholar 

  14. Chelnokov, Yu.N., Application of quaternions in the theory of orbital motion of an artificial satellite, I, Kosm. Issled., 1992, vol. 30, no. 6, pp. 759–770. [Cosmic Research, pp. 612–621].

    ADS  Google Scholar 

  15. Chelnokov, Yu.N., Quaternion regularization and stabilization of perturbed central motion. Part 1, Izv. Ross. Akad. Nauk, Mekh. Tverdogo Tela, 1993, no. 1, pp. 20–30.

    Google Scholar 

  16. Chelnokov, Yu.N., Construction of optimum control and trajectories of spacecraft flight by employing quaternion description of orbit spatial orientation, Kosm. Issled., 1997, vol. 35, no. 5, pp. 534–542. [Cosmic Research, pp. 499–507].

    Google Scholar 

  17. Chelnokov, Yu.N., Application of quaternions in space flight mechanics, Giroskopiya i Navigatsiya, 1999, no. 4 (27), pp. 47–66.

    Google Scholar 

  18. Chelnokov, Yu.N., Analysis of optimal motion control of a point in gravitational field with the use of quaternions, Izv Ross. Akad. Nauk, Teor Sistemy Upravl., 2007, no. 5, pp. 18–44.

    Google Scholar 

  19. Chelnokov, Yu.N., Kvaternnonnye modeli i metody dinamiki, navigatsii i upravleniya dvizheniem (Quaternion Models and Methods for Dynamics, Navigation, and Motion Control), Moscow: Fizmatlit, 2011.

    Google Scholar 

  20. Chelnokov, Yu.N., Application of quaternions in the theory of orbital motion of an artificial satellite. II, Kosm. Issled., 1993, vol. 31, no. 3, pp. 3–15. [Cosmic Research, pp. 400–418].

    ADS  Google Scholar 

  21. Chelnokov, Yu.N., The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a Newtonian gravitational field: I, Kosm. Issled., 2001, vol. 39, no. 5, pp. 502–517. [Cosmic Research, pp. 470–484].

    Google Scholar 

  22. Chelnokov, Yu.N., The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a Newtonian gravitational field: II, Kosm. Issled., 2003, vol. 41, no. 1, pp. 92–107. [Cosmic Research, pp. 85–99].

    Google Scholar 

  23. Bukhgolts, N.N., Osnovnoi kurs teoreticheskoi mekhaniki (chast’ pervaya) (Fundamental Course of Theoretical Mechanics, First Part), Moscow: Nauka, 1972.

    Google Scholar 

  24. Alekseev, K.V., Bebenin, G.G., and Yaroshevskii, V.A., Manevrirovanie kosmicheskikh apparatov (Maneuvering of Spacecraft), Moscow: Mashinostroenie, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Chelnokov.

Additional information

Original Russian Text © Yu.N. Chelnokov, 2014, published in Kosmicheskie Issledovaniya, 2014, Vol. 52, No. 4, pp. 322–336.

This work is a review based on materials of the plenary session report Quaternion Regularization in Trajectory Motion Control and Astrodynamics, presented at the 10th National Meeting on Fundamental Problems of Theoretical and Applied Mechanics [1] (Section I, “General and Applied Mechanics”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelnokov, Y.N. Quaternion regularization and trajectory motion control in celestial mechanics and astrodynamics: II. Cosmic Res 52, 304–317 (2014). https://doi.org/10.1134/S0010952514030022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952514030022

Keywords

Navigation