Skip to main content
Log in

Modeling the time behavior of the D st index during the main phase of magnetic storms generated by various types of solar wind

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Results of modeling the time behavior of the D st index at the main phase of 93 geomagnetic storms (−250 < D st ≤ −50 nT) caused by different types of solar wind (SW) streams: magnetic clouds (MC, 10 storms), corotating interaction regions (CIR, 31 storms), the compression region before interplanetary coronal ejections (Sheath before ICME, 21 storms), and “pistons” (Ejecta, 31 storms) are presented. The “Catalog of Large-Scale Solar Wind Phenomena during 1976–2000” (ftp://ftp.iki.rssi.ru/pub/omni/) created on the basis of the OMNI database was the initial data for the analysis. The main phase of magnetic storms is approximated by a linear dependence on the main parameters of the solar wind: integral electric field sumEy, dynamic pressure P d , and fluctuation level sB in IMF. For all types of SW, the main phase of magnetic storms is better modeled by individual values of the approximation coefficients: the correlation coefficient is high and the standard deviation between the modeled and measured values of D st is low. The accuracy of the model in question is higher for storms from MC and is lower by a factor of ∼2 for the storms from other types of SW. The version of the model with the approximation coefficients averaged over SW type describes worse variations of the measured D st index: the correlation coefficient is the lowest for the storms caused by MC and the highest for the Sheath- and CIR-induced storms. The model accuracy is the highest for the storms caused by Ejecta and, for the storms caused by Sheath, is a factor of ∼1.42 lower. Addition of corrections for the prehistory of the development of the beginning of the main phase of the magnetic storm improves modeling parameters for all types of interplanetary sources of storms: the correlation coefficient varies within the range from r = 0.81 for the storms caused by Ejecta to r = 0.85 for the storms caused by Sheath. The highest accuracy is for the storms caused by MC. It is, by a factor of ∼1.5, lower for the Sheath-induced storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Statistical study of interplanetary condition effect on geomagnetic storms, Kosm. Issled., 2010, vol. 48, no. 6, pp. 499–515. [Cosmic Research, pp. 485–500].

    Google Scholar 

  2. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters, Kosm. Issled., 2011, vol. 49, no. 1, pp. 24–37. [Cosmic Research, pp. 21–34].

    Google Scholar 

  3. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 2010, vol. 28, pp. 2177–2186.

    Article  ADS  Google Scholar 

  4. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams, Geomagn. Aeron., 2011, vol. 51, no. 1, pp. 49–65.

    Article  ADS  Google Scholar 

  5. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams: 2. Main phase of storm, Geomagn. Aeron., 2012, vol. 52, no. 1, pp. 28–36.

    Article  ADS  Google Scholar 

  6. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Geomagnetic activity during magnetic storms as a function of solar wind parameters for different types of flows: 3. Development of storm, Geomagn. Aeron., 2012, vol. 52, no. 1, pp. 37–48.

    Article  ADS  Google Scholar 

  7. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Geomagnetic activity during magnetic storms as a function of solar wind parameters for different types of flows: 4. Modeling for magnetic clouds, Geomagn. Aeron., 2013, no. 6. (in press).

    Google Scholar 

  8. Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and D st, J. Geophys. Res., 1975, vol. 80, pp. 4204–4214.

    Article  ADS  Google Scholar 

  9. Kane, R.P., Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined, Ann. Geophys., 2010, vol. 28, pp. 479–489.

    Article  ADS  Google Scholar 

  10. Ontiveros, V., Geomagnetic storms caused by shocks and ICMEs, J. Geophys. Res., 2010, vol. 115, A10244. doi: 10.1029/2010JA015471.

    Article  ADS  Google Scholar 

  11. Weigel, R.S., Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 2010, vol. 115, A09201. doi: 10.1029/2009JA015062.

    Article  ADS  Google Scholar 

  12. Feldstein, Y.I., Modelling of the magnetic field of magnetospheric ring current as a function of interplanetary parameters, Space Sci. Rev., 1992, vol. 59, pp. 83–165.

    Article  ADS  Google Scholar 

  13. Fenrich, F.R. and Luhmann, J.G., Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 1998, vol. 25, pp. 2999–3002.

    Article  ADS  Google Scholar 

  14. O’Brien, T.P. and McPherron, R.L., An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 2000, vol. 105, pp. 7707–7720.

    Article  ADS  Google Scholar 

  15. O’Brien, T.P. and McPherron, R.L., Forecasting the ring current index D st in real time, J. of Atmosph. and Sol.-Terrestr. Phys., 2000, vol. 62, pp. 1295–1299.

    Article  ADS  Google Scholar 

  16. Wang, C.B., Chao, J.K., and Lin, C.-H., Influence of the solar wind dynamic pressure on the decay and injection of the ring current, J. Geophys. Res., 2003, vol. 108, no. A9, p. 1341. doi: 10.1029/2003JA009851.

    Article  Google Scholar 

  17. Maltsev, Y.P., Points of controversy in the study of magnetic storms, Space Sci. Rev., 2004, vol. 110, pp. 227–267.

    Article  ADS  Google Scholar 

  18. Siscoe, G., McPherron, R.L., Liemohn, M.W., Ridley, A.J., and Lu, G., Reconciling prediction algorithms for D st, J. Geophys. Res., 2005, vol. 110, A02215. doi: 10.1029/2004JA010465.

    ADS  Google Scholar 

  19. Podladchikova, T.V. and Petrukovich, A.A., Extended geomagnetic storm forecast ahead of available solar wind measurements, Space Weather, 2012, vol. 10, S07001. doi: 10.1029/2012SW000786.

    Article  ADS  Google Scholar 

  20. Vassiliadis, D., Klimas, A.J., Baker, D.N., and Roberts, D.A., A description of solar wind-magnetosphere coupling based on nonlinear filters, J. Geophys. Res., 1995, vol. 100, no. A3, pp. 3495–3512.

    Article  ADS  Google Scholar 

  21. Vassiliadis, D., Klimas, A.J., and Baker, D.N., Models of D st geomagnetic activity and of its coupling to solar wind parameters, Phys. Chem. Earth (C), 1999, vol. 24, nos. 1–3, pp. 107–112.

    Google Scholar 

  22. Vassiliadis, D., Klimas, A.J., Valdivia, J.A., and Baker, D.N., The D st geomagnetic response as a function of storm phase and amplitude and the solar wind electric field, J. Geophys. Res., 1999, vol. 104, no. A11, pp. 24957–24976.

    Article  ADS  Google Scholar 

  23. Klimas, A.J., Vassiliadis, D., Baker, D.N., and Roberts, D.A., The organized nonlinear dynamics of the magnetosphere, J. Geophys. Res., 1996, vol. 101, pp. 13089–13113.

    Article  ADS  Google Scholar 

  24. Klimas, A.J., Vassiliadis, D., and Baker, D.N., D st index prediction using data-derived analogues of the magnetospheric dynamics, J. Geophys. Res., 1998, vol. 103, pp. 20435–20447.

    Article  ADS  Google Scholar 

  25. Wu, J.-G. and Lundstedt, H., Neural network modeling of solar wind-magnetosphere interaction, J. Geophys. Res., 1997, vol. 102, no. A7, pp. 14457–14466.

    Article  ADS  Google Scholar 

  26. McPherron, R.L. and O’Brien, T.P., Predicting geomagnetic activity: the D st index, in Space Weather, vol. 125 of Geophys. Monogr. ser., Song, P., Singer, H.J., and Siscoe G.L., Eds., Washington, DC: AGU, 2001.

    Chapter  Google Scholar 

  27. Temerin, M. and Li, X., A new model for the prediction of dst on the basis of the solar wind, J. Geophys. Res., 2002, vol. 107, no. A12, p. 1472.

    Article  Google Scholar 

  28. Temerin, M. and Li, X., D st model for 1995–2002, J. Geophys. Res., 2006, vol. 111, A04221. doi: 10.1029/2005JA011257.

    Article  ADS  Google Scholar 

  29. Sharifi, J., Araabi, B.N., and Lucas, C., Multi-step prediction of D st index using singular spectrum analysis and locally linear neurofuzzy modeling, Earth Planets Space, 2006, vol. 58, pp. 331–341.

    ADS  Google Scholar 

  30. Amata, E., Pallocchia, G., Consolini, G., Marcucci, M.F., and Bertello, I., Comparison between three algorithms for D st predictions over the 2003–2005 period, J. of Atmosph. and Sol.-Terrest. Phys., 2008, vol. 70, pp. 496–502.

    Article  ADS  Google Scholar 

  31. Boynton, R.J., Balikhin, M.A., Billings, S.A., Sharma, A.S., and Amariutei, O.A., Data derived NARMAX D st model, Ann. Geophys., 2011, vol. 29, pp. 965–971.

    Article  ADS  Google Scholar 

  32. Ji, E.-Y., Moon, Y.-J., Gopalswamy, N., and Lee, D.H., Comparison of D st forecast models for intense geomagnetic storms, J. Geophys. Res., 2012, vol. 117, A03209. doi: 10.1029/2011JA016872.

    Article  ADS  Google Scholar 

  33. Borovsky, J.E. and Denton, M.H., Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 2006, vol. 111, A07808. doi: 10.1029/2005JA011447.

    Google Scholar 

  34. Denton, M.H., Borovsky, J.E., Skoug, et al., Geomagnetic storms driven by ICME and CIR-dominated solar wind, J. Geophys. Res., 2006, vol. 111, A07S07. doi: 10.1029/2005JA011436.

    Article  ADS  Google Scholar 

  35. Huttunen, K.E.J., Koskinen, H.E.J., Karinen, A., and Mursula, K., Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions, Geophys. Res. Lett., 2006, vol. 33, p. L06107. doi: 10.1029/2005GL027775.

    Article  ADS  Google Scholar 

  36. Pulkkinen, T.I., Partamies, N., Huttunen, K.E.J., Reeves, G.D., and Koskinen, H.E.J., Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions, Geophys. Res. Lett., 2007, vol. 34, L02105. doi: 10.1029/2006GL027775.

    ADS  Google Scholar 

  37. Plotnikov, I.Ya. and Barkova, E.S., Nonlinear dependence of D st and A e indices on the electric field of magnetic clouds, Adv. Space Res., 2007, vol. 40, pp. 1858–1862.

    Article  ADS  Google Scholar 

  38. Longden, N., Denton, M.H., and Honary, F., Particle precipitation during ICME-driven and CIR-driven geomagnetic storms, J. Geophys. Res., 2008, vol. 113, p. A06205. doi: 10.1029/2007JA012752.

    Article  ADS  Google Scholar 

  39. Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. of Atmosph. and Sol.-Terrest. Phys., 2009, vol. 71, pp. 1023–1031.

    Article  ADS  Google Scholar 

  40. Despirak, I.V., Lubchich, A.A., and Guineva, V., Development of substorm bulges during storms of different interplanetary origins, J. of Atmosph. and Sol.-Terrest. Phys., 2011, vol. 73, pp. 1460–1464.

    Article  ADS  Google Scholar 

  41. Guo, J., Feng, X., Emery, B.A., et al., Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 2011, vol. 116, A05106. doi: 10.1029/2011JA016490.

    ADS  Google Scholar 

  42. Tsurutani, B.T., Lakhina, G.S., Pickett, J.S., Guarnieri, F.L., Lin, N., and Goldstein, B.E., Nonlinear Alfven’s waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: Intermediate shocks?, Nonlinear Proc. Geophys., 2005, vol. 12, p. 321.

    Article  ADS  Google Scholar 

  43. Jordanova, V.K., Modeling the behavior of corotating interaction region driven storms in comparison with coronal mass ejection driven storms, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Tsurutani, B.T., McPherron, R.L., Gonzalez, W.D., Lu, G., Sobral, J.H.A., and Gopalswamy, N., Eds., vol. 167 of Geophysical Monograph Series, Washington, DC: AGU, 2006.

    Chapter  Google Scholar 

  44. Liemohn, M.W. and Jazowski, M., Ring current simulations of the 90 intense storms during solar cycle 23, J. Geophys. Res., 2008, vol. 113, p. A00A17. doi: 10.1029/2008JA013466.

    Article  ADS  Google Scholar 

  45. Liemohn, M.W., Jazowski, M., Kozyra, J.U., Ganushkina, N., Thomsen, M.F., and Borovsky, J.E., CIR versus CME drivers of the ring current during intense magnetic storms, Proc. R. Soc. A, 2010, vol. 466, pp. 3305–3328. doi: 10.1098/rspa.2010.0075.

    Article  ADS  Google Scholar 

  46. Cerrato, Y., Saiz, E., Cid, C., Gonzalez, W.D., and Palacios, J., Solar and interplanetary triggers of the largest D st variations of the solar cycle 23, J. of Atmosph. and Sol.-Terrest. Phys., 2012, vol. 80, pp. 111–123.

    Article  ADS  Google Scholar 

  47. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.I., Geoeffectiveness and efficiency of CIR, Sheath, and ICME in generation of magnetic storms, J. Geophys. Res., 2012, vol. 117, p. A00L07. doi: 10.1029/2011JA017139.

    Article  ADS  Google Scholar 

  48. Tsyganenko, N.A. and Sitnov, M.I., Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 2005, vol. 110, p. A03208. doi: 10.1029/2004JA010798.

    Article  ADS  Google Scholar 

  49. Levitin, A.E., Dremukhina, L.A., Gromova, L.I., and Ptitsyna, N.G., Modeling giant disturbances in geomagnetic field, Physics of Auroral Phenomena, Proc. XXXIV Annual Seminar, Apatity, 2011, pp. 29–32.

    Google Scholar 

  50. King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data, J. Geophys. Res., 2004, vol. 110, no. A2, p. A02209. doi: 10.1029/2004JA010804.

    Google Scholar 

  51. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of Large-Scale Solar Wind Phenomena during 1976–2000, Kosm. Issled., 2009, vol. 47, no. 2, pp. 99–113. [Cosmic Research, pp. 81–94].

    Google Scholar 

  52. Garcia, H.A. and Dryer, M., The solar flares on February 1986 and the ensuing intense geomagnetic storm, Solar Phys., 1987, vol. 109, pp. 119–137.

    Article  ADS  Google Scholar 

  53. Tsurutani, B.T., Gonzalez, W.D., Tang, F., and Lee, E.T., Great magnetic storms, Geophys. Res. Lett., 1992, vol. 19, no. 1, pp. 73–76.

    Article  ADS  Google Scholar 

  54. Eselevich, V.G. and Fainshtein, V.G., An investigation of the relationship between the magnetic storm D st-index and different types of solar wind streams, Ann. Geophys., 1993, vol. 11, no. 8, pp. 678–684.

    ADS  Google Scholar 

  55. Huttunen, K.E.J. and Koskinen, H.E.J., Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity, Ann. Geophys., 2004, vol. 22, pp. 1729–1738.

    Article  ADS  Google Scholar 

  56. Yermolaev, Y.I., Yermolaev, M.Y., Lodkina, I.G., and Nikolaeva, N.S., Statistic investigation of heliospheric conditions resulting in magnetic storms, Kosm. Issled., 2007, vol. 45, no. 1, pp. 3–11. [Cosmic Research, pp. 1–8].

    Google Scholar 

  57. Yermolaev, Y.I., Yermolaev, M.Y., Lodkina, I.G., and Nikolaeva, N.S., Statistic investigation of heliospheric conditions resulting in magnetic storms: 2, Kosm. Issled., 2007, vol. 45, no. 6, pp. 489–498. [Cosmic Research, pp. 461–470].

    Google Scholar 

  58. Yermolaev, Y.I., Yermolaev, M.Y., Nikolaeva, N.S., and Lodkina, L.G., Interplanetary conditions for CIR-induced and MC-induced geomagnetic storms, Bulg. J. Phys., 2007, vol. 34, pp. 128–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Nikolaeva, Yu.I. Yermolaev, I.G. Lodkina, 2013, published in Kosmicheskie Issledovaniya, 2013, Vol. 51, No. 6, pp. 443–454.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaeva, N.S., Yermolaev, Y.I. & Lodkina, I.G. Modeling the time behavior of the D st index during the main phase of magnetic storms generated by various types of solar wind. Cosmic Res 51, 401–412 (2013). https://doi.org/10.1134/S0010952513060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952513060038

Keywords

Navigation