Skip to main content
Log in

Why does the total pressure on the subsolar magnetopause differ from the solar wind dynamic pressure?

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Based on analysis of MHD equations and the results of numerical simulation in the magneto-sheath it is demonstrated that the total pressure on the magnetopause differs from the solar wind dynamic pressure in the majority of cases. From the equation of motion it follows that the total pressure is reduced due to deflection from the Sun-Earth line. At the same time, it increases because of formation of a magnetic barrier. This result is consistent with experimentally observed expansion of the magnetosphere for the radial direction of the interplanetary magnetic field, when no magnetic barrier is formed. In this paper we compare the behavior of pressure along the Sun-Earth line for the northward and radial interplanetary field, using the results of numerical MHD simulation and observational data from THEMIS. In the isotropic MHD approximation, the difference between the total pressure on the subsolar magnetopause at northern and radial IMFs does not exceed 10–12 percent. However, in the anisotropic approximation this difference increases up to 15–20 percent. The results of anisotropic modeling well agree with observed averaged profiles of pressure components in the subsolar magnetosheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gul’el’mi, A.V. and Troitskaya, V.A., Geomagnitnye pul’satsii i diagnostika magnitosfery (Geomagnetic Pulsations and Diagnostics of the Magnetosphere), Moscow: Nauka, 1973, p. 208.

    Google Scholar 

  2. Erkaev, N.V., Obtekanie solnechnym vetrom magnitosfery Zemli (Solar Wind Flow around the Earth’s Magnetosphere), Moscow: MGK of USSR Acad. Sci., 1989, p. 132.

    Google Scholar 

  3. Znatkova, S.S., Antonova, E.E., Zastenker, G.N., and Kirpichev, I.P., PPressure Balance on the Magnetopause near the Subsolar Point according to Observational Data of the THEMIS Project Satellites, Cosm. Res., 2011, vol. 49, no. 1, pp. 3–20.

    Article  ADS  Google Scholar 

  4. Pudovkin, M.I., Formation of a Magnetic Barrier in Front of the Dayside Magnetopause and Its Characteristics, Geomagn. Aeron., 1987, vol. 27, p. 18.

    ADS  Google Scholar 

  5. Anderson, B.J. and Fuselier, S.A., Magnetic Pulsations from 0.1 to 4.0 Hz and Associated Plasma Properties in the Earth’s Subsolar Magnetosheath and Plasma Depletion Layer, J. Geophys. Res., 1993, vol. 98, p. 1461.

    Article  ADS  Google Scholar 

  6. Anderson, B.J., Phan, T.-D., and Fuselier, S.A., Relationships between Plasma Depletion and Subsolar Reconnection, J. Geophys. Res., 1997, vol. 102, p. 9531.

    Article  ADS  Google Scholar 

  7. Aubry, M.-P., Russell, C.T., and Kivelson, M.G., Inward Motion of the Magnetopause before a Substorm, J. Geophys. Res., 1970, vol. 75, p. 7018.

    Article  ADS  Google Scholar 

  8. Brackbill, J.U. and Barnes, D.C., The Effect of Nonzero ∇ · B on the Numerical Solution of the Magnetohydrodynamic Equations, J. Comput. Phys., 1980, vol. 35, no. 3, p. 426.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Cairns, I.H. and Lyon, J.G., Magnetic Field Orientation Effects on the Standoff Distance of Earth’s Bow Shock, Geophys. Res. Lett., 1996, vol. 23, p. 2883.

    Article  ADS  Google Scholar 

  10. Chew, G.F., Goldberger, M.L., and Low, F.E., The Boltzmann Equation and the One-Fluid Hydromagnetic Equations in the Absence of Particle Collisions, Roy. Soc. L.: Proc. Ser. A, 1956, vol. 236, p. 112.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Crooker, N.U., Siscoe, G.L., and Geller, R.B., Persistent Pressure Anisotropy in the Subsonic Magnetosheath Region, Geophys. Res. Lett., 1976, vol. 3, p. 65.

    Article  ADS  Google Scholar 

  12. Denton, R.E. and Lyon, J.G., Density Depletion in an Anisotropic Magnetosheath, Geophys. Res. Lett., 1996, vol. 23, p. 2891.

    Article  ADS  Google Scholar 

  13. Dmitriev, A.V., Chao, J.K., and Wu, D.J., Comparative Study of Bow Shock Models Using Wind and Geotail Observations, J. Geophys. Res., 2003, vol. 108, p. 1464.

    Article  Google Scholar 

  14. Dušik, S., Granko, G., Šafranková, J., et al., IMF Cone Angle Control of the Magnetopause Location: Statistical Study, Geophys. Res. Lett., 2010, vol. 371, p. L19103.

    Google Scholar 

  15. Erkaev, N.V., Farrugia, C.J., and Biernat, H.K., Three-Dimensional, One-Fluid, Ideal MHD Model of Magnetosheath Flow with Anisotropic Pressure, J. Geophys. Res., 1999, vol. 104, p. 6877.

    Article  ADS  Google Scholar 

  16. Fairfield, D.H., Average and Unusual Locations of the Earth’s Magnetopause and Bow Shock, J. Geophys. Res., 1971, vol. 76, p. 6700.

    Article  ADS  Google Scholar 

  17. Fairfield, D.H., Baumjohann, W., Paschmann, G., et al., Upstream Pressure Variations Associated with the Bow Shock and Their Effects on the Magnetosphere, J. Geophys. Res., 1990, vol. 95, p. 3773.

    Article  ADS  Google Scholar 

  18. Farrugia, C.J., Erkaev, N.V., Vogl, D.F., et al., Anisotropic Magnetosheath: Comparison of Theory with Wind Observations near the Stagnation Streamline, J. Geophys. Res., 2001, vol. 106, p. 29373.

    Article  ADS  Google Scholar 

  19. Gary, S.P., Fuselier, S.A., and Anderson, B.J., Ion Anisotropy Instabilities in the Magnetosheath, J. Geophys. Res., 1993, vol. 98, p. 1481.

    Article  ADS  Google Scholar 

  20. Hudson, P.D., Discontinuities in an Anisotropic Plasma and Their Identification in the Solar Wind, Planet Space Sci., 1970, vol. 18, p. 1611.

    Article  ADS  Google Scholar 

  21. Jelínek, K., Němeček, Z., Šafránková, J., et al., Thin Magnetosheath s as Consequence of the Magnetopause Deformation: THEMIS Observations, J. Geophys. Res., 2010, vol. 115, p. A10203.

    Article  ADS  Google Scholar 

  22. Jelínek, K., Němeček, Z., and Šafránková, J., A New Approach to Magnetopause and Bow Shock Modeling Based on Automated Region Identification, J. Geophys. Res., 2012, vol. 117, p. A05208. doi: 10.1029/2011JA017252.

    Article  ADS  Google Scholar 

  23. Kasper, J.C., Lazarus, A.J., and Gary, S.P., Wind/SWE Observations of Firehose Constraint on Solar Wind Proton Temperature Anisotropy, Geophys. Res. Lett., 2002, vol. 29, p. 1839.

    Article  ADS  Google Scholar 

  24. Kovner, M.S. and Feldstein, Ya.I., On Solar Wind Interaction with the Earth’s Magnetosphere, Planet. Space Sci., 1973, vol. 21, p. 1191.

    Article  ADS  Google Scholar 

  25. Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media, Oxford, UK: Pergamon, 1960, p. 213.

    MATH  Google Scholar 

  26. Merka, J., Szabo, A., Šafránková, J., and Němeček, Z., Earth’s Bow Shock and Magnetopause in the Case of a Field-Aligned Upstream Flow: Observation and Model Comparison, J. Geophys. Res., 2003, vol. 108, p. 1269.

    Article  Google Scholar 

  27. Paschmann, G., Baumjohann, W., Sckopke, N., et al., Structure of the Dayside Magnetopause for Low Magnetic Shear, J. Geophys. Res., 1993, vol. 98, p. 13409.

    Article  ADS  Google Scholar 

  28. Phan, T.-D., Paschmann, G., Baumjohann, W., et al., The Magnetosheath Region Adjacent to the Dayside Magnetopause: AMPTE/IRM Observations, J. Geophys. Res., 1994, vol. 99, p. 121.

    Article  ADS  Google Scholar 

  29. Pudovkin, M.I., Parameters of the Day Side Magnetopause and Generation of the Electric Field in the Magnetosphere, Ann. Geophys., 1982, vol. 38, p. 745.

    Google Scholar 

  30. Pudovkin, M.I., Besser, B.P., and Zaitseva, S.A., Magnetopause Stand-off Distance in Dependence on the Magnetosheath and Solar Wind Parameters, Ann. Geophys., 1998, vol. 16, p. 388.

    Article  ADS  Google Scholar 

  31. Šafránková, J., Němeček, Z., Dušík, Š., et al., The Magnetopause Shape and Location: A Comparison of the Interball and Geotail Observations with Models, Ann. Geophys., 2002, vol. 20, p. 301.

    Article  Google Scholar 

  32. Samsonov, A.A. and Pudovkin, M.I., Flow of an Ideal Anisotropic CGL Plasma around a Sphere, Geomagn. Aeron., 1998, vol. 38, p. 727.

    Google Scholar 

  33. Samsonov, A.A. and Pudovkin, M.I., Application of the Bounded Anisotropy Model for the Dayside Magnetosheath, J. Geophys. Res., 2000, vol. 105, p. 12859.

    Article  ADS  Google Scholar 

  34. Samsonov, A.A., Pudovkin, M.I., Gary, S.P., and Hubert, D., Anisotropic MHD Model of the Dayside Magnetosheath Downstream of the Oblique Bow Shock, J. Geophys. Res., 2001, vol. 106, p. 21689.

    Article  ADS  Google Scholar 

  35. Samsonov, A.A., Numerical Modeling of the Earth’s Magnetosheath for Different IMF Orientations, Adv. Space Res., 2006, vol. 38, p. 1652.

    Article  ADS  Google Scholar 

  36. Samsonov, A.A., Alexandrova, O., Lacombe, C., et al., Proton Temperature Anisotropy in the Magnetosheath: Comparison of 3-D MHD Modeling with Cluster Data, Ann. Geophys., 2007, vol. 25, p. 1157.

    Article  ADS  Google Scholar 

  37. Samsonov, A.A., Němeček, Z., Šafránková, J., and Jelínek, K., Why Does the Subsolar Magnetopause Move Sunward for Radial Interplanetary Magnetic Field?, J. Geophys. Res., 2012, vol. 117, p. A05221.

    Article  ADS  Google Scholar 

  38. Shue, J.-H., Song, P., Russell, C.T., et al., Magnetopause Location under Extreme Solar Wind Conditions, J. Geophys. Res., 1998, vol. 103, p. 17691.

    Article  ADS  Google Scholar 

  39. Siscoe, G.L., Crooker, N.U., Erickson, G.M., et al., MHD Properties of Magnetosheath Flow, Planet. Space Sci., 2002, vol. 50, p. 461.

    Article  ADS  Google Scholar 

  40. Slavin, J.A., Szabo, A., Peredo, M., et al., Near-Simultaneous Bow Shock Crossings by WIND and IMP 8 on December 1, 1994, Geophys. Res. Lett., 1996, vol. 23, p. 1207.

    Article  ADS  Google Scholar 

  41. Spreiter, J.R. and Rizzi, A.W., Aligned Magnetohydrodynamic Solution for Solar Wind Flow Past the Earth’s Magnetosphere, Acta Astronaut., 1974, vol. 1, p. 15.

    Article  ADS  MATH  Google Scholar 

  42. Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic Flow around the Magnetosphere, Planet. Space Sci., 1966, vol. 14, p. 223.

    Article  ADS  Google Scholar 

  43. Suvorova, A.V., Shue, J.-H., Dmitriev, A.V., et al., Magnetopause Expansions for Quasi-Radial Interplanetary Magnetic Field: THEMIS and Geotail Observations, J. Geophys. Res., 2010, vol. 115, p. A10216.

    Article  ADS  Google Scholar 

  44. Tsyganenko, N.A. and Sibeck, D.G., Concerning Flux Erosion from the Dayside Magnetosphere, J. Geophys. Res., 1994, vol. 99, p. 13425.

    Article  ADS  Google Scholar 

  45. Verigin, M., Kotova, G., Szabo, A., et al., Wind Observations of the Terrestrial Bow Shock: 3-D Shape and Motion, Earth, Planets, Space, 2001, vol. 53, p. 1009.

    ADS  Google Scholar 

  46. Wu, C.C., MHD Flow Past an Obstacle—Large-Scale Flow in the Magnetosheath, Geophys. Res. Lett., 1992, vol. 19, p. 87.

    Article  ADS  Google Scholar 

  47. Zwan, B.J., and Wolf, R.A., Depletion of Solar Wind Plasma near a Planetary Boundary, J. Geophys. Res., 1976, vol. 81, p. 1636.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Samsonov.

Additional information

Original Russian Text © A.A. Samsonov, Z. Němeček, J. Šafránková, K. Jelínek, 2013, published in Kosmicheskie Issledovaniya, 2013, Vol. 51, No. 1, pp. 43-52.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samsonov, A.A., Němeček, Z., Šafránková, J. et al. Why does the total pressure on the subsolar magnetopause differ from the solar wind dynamic pressure?. Cosmic Res 51, 37–45 (2013). https://doi.org/10.1134/S0010952513010073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952513010073

Keywords

Navigation