Skip to main content
Log in

Relationship between the fluxes of relativistic electrons at geosynchronous orbit and the level of ULF activity on the Earth’s surface and in the solar wind during the 23rd solar activity cycle

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradov, P. and Parkhomov, V., MHD Waves in the Solar Wind—A Possible Source of Geomagnetic Pc3 Pulsations, Geomagn. Aeron., 1975, vol. 15, pp. 134–137.

    ADS  Google Scholar 

  2. Potapov, A.S., Polyushkina, T.N., and Buzevich, A.V., New Data on Connection of Daytime Stable Geomagnetic Pulsations with Parameters of the Solar Wind, Issled. po Geomagnetizmu, Aeronomii i Fizike Solntsa, 1979, no. 49, pp. 84–88.

  3. Greenstadt, E.W., Olson, J.V., Loewen, P.D., et al., Correlation of Pc 3, 4, and 5 Activity with Solar Wind Speed, J. Geophys. Res., 1979, vol. 84, pp. 6694–6696.

    Article  ADS  Google Scholar 

  4. Wolfe, A., Lanzerotti, L.J., and Maclennan, C.G., Dependence of Hydromagnetic Energy Spectra on Solar Wind Velocity and Interplanetary Magnetic Field Direction, J. Geophys. Res., 1980, vol. 85, pp. 114–118.

    Article  ADS  Google Scholar 

  5. Junginger, H. and Baumjohann, W., Dayside Long-Period Magnetospheric Pulsations: Solar Wind Dependence, J. Geophys. Res., 1988, vol. 93, pp. 877–883.

    Article  ADS  Google Scholar 

  6. Engebretson, M., Glassmeier, K.-H., Stellmacher, M., et al., The Dependence of High Latitude Pc5 Wave Power on Solar Wind Velocity and on the Phase of High Speed Solar Wind Streams, J. Geophys. Res., 1998, vol. 103, pp. 26271–26283.

    Article  ADS  Google Scholar 

  7. Mathie, R.A. and Mann, I.R., On the Solar Wind Control of Pc5 ULF Pulsation Power at Mid-Latitudes: Implications for MeV Electron Acceleration in the Outer Radiation Belt, J. Geophys. Res., 2001, vol. 106, pp. 29 783–29 796.

    Article  ADS  Google Scholar 

  8. Elkington, S.R., Hudson, M.K., and Chan, A.A., Acceleration of Relativistic Electrons via Drift-Resonance Interaction with Toroidal-Mode Pc5 ULF Oscillations, Geophys. Res. Lett., 1999, vol. 26, pp. 3273–3276.

    Article  ADS  Google Scholar 

  9. Liu, W.W., Rostoker, G., and Baker, D.N., Internal Acceleration of Relativistic Electrons by Large-Amplitude ULF Pulsations, J. Geophys. Res., 1999, vol. 104, pp. 17391–17408.

    Article  ADS  Google Scholar 

  10. Gubar’, Yu.I., Drift Resonance of Relativistic Electrons with ULF Waves as a Nonlinear Resonance, Kosm. Issled., 2010, vol. 48, no. 4, pp. 308–316. [Cosmic Research, pp. 300–307].

    Google Scholar 

  11. Baker, D., Satellite Anomalies due to Space Storms, in Space Storms and Space Weather Hazards, Daglis, I.A., Ed., New York: Springer, 2001, Chap. 10, pp. 251–284.

    Google Scholar 

  12. Baker, D.N., Allen, J.H., Kanekal, S.G., and Reeves, G.D., Disturbed Space Environment May Have Been Related to Pager Satellite Failure, Eos, Trans. AGU, 1998, vol. 79, no. 40, p. 477.

    Article  ADS  Google Scholar 

  13. Fung, S.F. and Tan, L.C., Time Correlation of Low-Altitude Relativistic Trapped Electron Fluxes with Solar Wind Speeds, Geophys. Res. Lett., 1998, vol. 25, pp. 2361–2364.

    Article  ADS  Google Scholar 

  14. Mathie, R.A. and Mann, I.R., A Correlation between Extended Intervals of ULF Wave Power and Storm-Time Geosynchronous Relativistic Electron Flux Enhancements, Geophys. Res. Lett., 2000, vol. 27, pp. 3261–3264.

    Article  ADS  Google Scholar 

  15. Mann, I.R., O’Brien, T.P., and Milling, D.K., Correlations between ULF Wave Power, Solar Wind Speed, and Relativistic Electron Flux in the Magnetosphere: Solar Cycle Dependence, J. Atmosph. Solar-Terr. Phys., 2004, vol. 66, pp. 187–198.

    Article  ADS  Google Scholar 

  16. Walker, A.D.M., Excitation of Field Line Resonances by MHD Waves Originating in the Solar Wind, J. Geophys. Res., 2002, vol. 107, no. A12. doi: 10.1029/2001JA009188.

  17. Kessel, R.L., Solar Wind Excitation of Pc5 Fluctuations in the Magnetosphere and on the Ground, J. Geophys. Res., 2008, vol. 113, no. A04202. doi: 10.1029/2007JA012255.

  18. Marmet, P., New Digital Filter for the Analysis of Experimental Data, Rev. Sci. Instrum., 1979, vol. 50, no. 1, pp. 79–83.

    Article  ADS  Google Scholar 

  19. King, J.H. and Papitashvili, N.E., Interplanetary Medium Data Book, Supplement 5. Technical Report 1988–1993, Greenbelt, MD: National Space Science Data Center, 1994.

    Google Scholar 

  20. Merkov, A.M. and Polyakov, L.E., Sanitarnaya statistika (Sanitary Statistics), Moscow: Meditsina, 1974.

    Google Scholar 

  21. Hudson, M.K., Elkington, S.R., Lyon, J.G., et al., Simulations of Radiation Belt Dynamics Driven by Solar Wind Variations, in Sun-Earth Plasma Connections, Burch, J.L., Carovillano, R.L., and Antiochos, S.K., Eds., Washington, D.C.: American Geophysical Union, 1999, pp. 171–182.

    Chapter  Google Scholar 

  22. Degtyarev, V.I., Chudnenko, S.E., Kharchenko, I.P., et al., Prediction of Maximal Daily Average Values of Relativistic Electron Fluxes in Geostationary Orbit during the Magnetic Storm Recovery Phase, Geomagn. Aeron., 2009, vol. 49, no. 8, pp. 1–10.

    Article  ADS  Google Scholar 

  23. Crooker, N.U., Solar Cycle Variations of the Solar Wind, JPL Solar Wind Five NASA Conference Publication, 1983, vol. 228, pp. 303–314.

    ADS  Google Scholar 

  24. Motoba, T., Kikuchi, T., Okuzawa, T., and Yumoto, K., Dynamical Response of the Magnetosphere-Ionosphere System to a Solar Wind Dynamic Pressure Oscillation, J. Geophys. Res., 2003, vol. 108, no. A5. doi: 10.1029/2002JA009696.

  25. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., et al., Interplanetary Origin of Geomagnetic Activity in the Declining Phase of the Solar Cycle, J. Geophys. Res., 1995, vol. 100, no. A11, pp. 21717–21734.

    Article  ADS  Google Scholar 

  26. Zolotukhina, N.A., Magnetospheric Disturbances Excited by Solar Wind Density Enhancements on April 11, 1997, Geomagn. Aeron., 2006, vol. 46, no. 6, pp. 688–700.

    Article  ADS  Google Scholar 

  27. Zolotukhina, N., Pilipenko, V., Engebretson, M., and Rodger, A., Response of the Inner and Outer Magnetosphere to Solar Wind Density Fluctuations during the Recovery Phase of a Moderate Magnetic Storm, J. Atmosph. Solar-Terrestr. Phys., 2007, vol. 69, no. 14, pp. 1707–1722.

    Article  ADS  Google Scholar 

  28. Ukhorskiy, A.Y., Sitnov, M.I., Takahashi, K., and Anderson, B.J., Radial Transport of Radiation Belt Electrons due to Stormtime Pc5 Waves, Ann. Geophys., 2009, vol. 27, pp. 2173–2181.

    Article  ADS  Google Scholar 

  29. Fejer, J., Hydromagnetic Stability at a Fluid Velocity between Compressible Fluids, Phys. Fluids, 1964, vol. 7, pp. 499–503.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Fujita, S., Glassmeier, K.H., and Kamide, K., MHD Waves Generated by the Kelvin-Helmholtz Instability in a Nonuniform Magnetosphere, J. Geophys. Res., 1996, vol. 101, pp. 27317–27326.

    Article  ADS  Google Scholar 

  31. McKenzie, J.F., Hydromagnetic Wave Interaction with the Magnetopause and the Bow Shock, Planet. Space Sci., 1970, vol. 18, pp. 1–23.

    Article  ADS  Google Scholar 

  32. Barkhatov, N.A., Attenuation of Ultra-Low-Frequency Waves in the Magnetosheath, Geomagn. Aeron., 1982, vol. 22, pp. 819–823.

    ADS  Google Scholar 

  33. Klain, B.I. and Potapov, A.S., Influence of Finite Motions on Instability of Tangential Discontinuities in the Earth’s Magnetosphere, Issledovaniya po Geomagnetizmu, Aeronomii i Fizike Solntsa, 1973, no. 27, pp. 49–53.

  34. Mishin, V.V., Accelerated Motions of the Magnetopause as a Trigger of the Kelvin-Helmholtz Instability, J. Geophys. Res., 1993, vol. 98, no. A12, pp. 21365–21371.

    Article  ADS  Google Scholar 

  35. Farrugia, C.J., Gratton, F.T., Bender, L., et al., Charts of Joint Kelvin-Helmholtz and Rayleigh-Taylor Instabilities at the Dayside Magnetopause for Strongly Northward Interplanetary Magnetic Field, J. Geophys. Res., 1998, vol. 103, pp. 6703–6727.

    Article  ADS  Google Scholar 

  36. Potapov, A.S. and Polyushkina, T.N., Experimental Evidence of Direct Penetration of ULF Waves from the Solar Wind and of Acceleration by Them of Radiation Belt Electrons, Solnechno-Zemnaya Fizika, 2010, no. 15, pp. 28–34.

  37. Klain, B.I. and Kurazhkovskaya, N.A., The Possible Excitation Mechanism of the Burst Regimes of Long-Period Irregular Pulsations (the Series of Ipcl Bursts), Geophysical Research Abstracts, 2010, vol. 12, pp. EGU2010–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Potapov.

Additional information

Original Russian Text © A.S. Potapov, B. Tsegmed, L.V. Ryzhakova, 2012, published in Kosmicheskie Issledovaniya, 2012, Vol. 50, No. 2, pp. 130–146.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapov, A.S., Tsegmed, B. & Ryzhakova, L.V. Relationship between the fluxes of relativistic electrons at geosynchronous orbit and the level of ULF activity on the Earth’s surface and in the solar wind during the 23rd solar activity cycle. Cosmic Res 50, 124–140 (2012). https://doi.org/10.1134/S0010952512020086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952512020086

Keywords

Navigation