Skip to main content
Log in

Power law distribution in statistics of failures in operation of spacecraft onboard equipment

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The possibility of using the statistics of recurrence time for extreme events is studied in this paper having in mind the problems of control and prediction of failures in spacecraft operation. The information about failures onboard satellites of various types presented by the US National Geophysical Data Center was analyzed. It was found that the probability density of recurrence intervals followed a power law of the Pareto type with an index equal to 2.3. The obtained result is consistent both with the theory of normal catastrophes and with the principle of self-organization of criticality for metastable active heterogeneous environment. A practical consequence of the obtained result consists in the fact that predictions of these extreme events should not rely on traditional models with the second-order Pearson statistics. To make predictions, the models are necessary that take into account the power law distribution of recurrence intervals for failures on satellites. The failures should be considered in these models as extreme events connected with manifestation of the space environment factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iucci, N., Levitin A. E., Belov A.V., et al., Space Weather Conditions and Spacecraft Anomalies in Different Orbits, Space Weather, 2005, vol. 3, p. 01001. doi: 10.1029/2003SW000056.

    Article  Google Scholar 

  2. Baker, D.N., Allen, J.K., Kanekal, S.G., et al., Disturbed Space Environment May Have Been Related to Pager Satellite Failure, EOS Trans. AGU, 1998, vol. 79, p. 477.

    Article  ADS  Google Scholar 

  3. Panasyuk, M.I., The Trapped Anomalous Component of the Cosmic Rays: the Short Overview of Experiments, Inter. J. Modern Phys., 2002, vol. 17A, p. 1705.

    Article  ADS  Google Scholar 

  4. Pilipenko, V.A., Romanova, K.V., and Chizhenkov, V.A., Effect of Space Weather on Satellite Systems, Izv. Mosk. Gos. Univ., Sek. Nauk o Zemle, 2006, no. 14, p. 93.

  5. Allan, J., Sauer, H., Frank, I., and Reiff, P., Effects of the March 1989 Solar Activity, EOS, 1989, vol. 70, p. 1479.

    Article  ADS  Google Scholar 

  6. Adams, J.H., Beliaev, A.A., Kuznetsov, N.V., et al., Occurrence Frequency of Single-Event Upsets Inducted on Synchronous Orbit: Model Calculations and TDRS-1 Experiment, Radiat. Meas., 1996, vol. 22, p. 509.

    Article  Google Scholar 

  7. Brautigam, D.H., CRRES in Review: Space Weather and Its Effect on Technology, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, p. 1709.

    Article  ADS  Google Scholar 

  8. Cole, D.G., Space Weather: Its Effects and Predictability, Space Science Reviews, 2003, vol. 107, nos. (1–2), p. 295.

    Article  ADS  Google Scholar 

  9. Schwenn, R., Space Weather: The Solar Perspective, Living Reviews in Solar Physics, 2006, vol. 3.

  10. Pulkkinen, T., Space Weather: Terrestrial Perspective, Living Reviews in Solar Physics, 2007, vol. 4.

  11. Leadbetter, M.R., Lindgren, G., Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, New York: Springer, 1983. Translated under the title Ekstremumy sluchainykh posledovatel’nostei i protsessov, Moscow: Mir, 1989.

    Book  MATH  Google Scholar 

  12. Albeverio, S. and Piterbarg, V., Mathematical Methods and Concepts for the Analysis of Extreme Events, in Extreme Events in Nature and Society, Berlin-Heidelberg: Springer, 2006, pp. 47–68.

    Chapter  Google Scholar 

  13. Newman, M.E.J., Power Laws, Pareto Distributions, and Zipf’s Law, Contemporary Physics, 2005, vol. 46, p. 323.

    Article  ADS  Google Scholar 

  14. Malinetskii, G.G. and Potapov, A.B., Sovremennye problemy nelineinoi dinamiki (Modern Problems of Nonlinear Dynamics), Moscow: URSS, 2002.

    Google Scholar 

  15. Mandelbrot, B., Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, New York: Springer, 1997. Translated under the title Fraktaly, sluchai i finansy, Moscow-Izhevsk, 2003.

    MATH  Google Scholar 

  16. Wornell, G., Signal Processing with Fractals: A Wavelet-Based Approach, Prentice Hall Signal Processing Series, 1995.

  17. Mitzenmacher, M., A Brief History of Generative Models for Power Law and Lognormal Distributions, Internet Mathematics, 2004, vol. 1, p. 226.

    Article  MathSciNet  MATH  Google Scholar 

  18. Clauset, A., Shalizi, C.R., and Newman, M.E.J., Power-Law Distributions in Empirical Data, SIAM Review, 2009. arXiv: 0706.1062.

  19. Sornette, D. and Sornette, A., General Theory of the Modified Gutenberg-Richter Law for Large Seismic Moments, Bull. Seismol. Soc. of America, 1999, vol. 89, p. 1121.

    Google Scholar 

  20. Eichner, J.F. and Koscielny-Bunde, E., Bunde, A., et al., Power-Law Persistence and Trends in the Atmosphere: A Detailed Study of Long Temperature Records, Phys. Rev. E, 2003, vol. 68.

  21. Balasis, G., Daglis, I., Kapiris, P., et al., From Pre-Storm Activity to Magnetic Storms: A Transition Described in Terms of Fractal Dynamics, Ann. Geophys., 2006, vol. 24, pp. 3557–3567.

    Article  ADS  Google Scholar 

  22. Yung-Ping, Chou, What Affects the Power-Law Distribution of the X-Ray Solar Flares? A Theoretical Study Based on a Model of Uniform Normal Field, Astrophys. J., 1999, vol. 527, p. 958.

    Article  ADS  Google Scholar 

  23. Boffetta, G., Carbone, V., Giuliani, P., et al., A Power Laws in Solar Flares: Self-Organized Criticality or Turbulence?, Phys. Rev. Lett., 1999, vol. 83, p. 4662.

    Article  ADS  Google Scholar 

  24. Altman, E., Silva, E., and Caldas, I., Recurrence Time Statistics for Finite Size Intervals, Chaos, 2004, vol. 14, p. 975.

    Article  MathSciNet  ADS  Google Scholar 

  25. Altmann, K. and Kantz, H., Recurrence Time Analysis, Long-Term Correlations, and Extreme Events, Phys. Rev. E, 2005, vol. 71.

  26. Kac, M., Probability and Related Topics in Physical Sciences, London: Interscience, 1959. Translated under the title Veroyatnost’ i smezhnye voprosy v fizike, Moscow: Mir, 1965.

    MATH  Google Scholar 

  27. Nicolis, C., Atmospheric Analogs and Recurrence Time Statistics: Toward a Dynamical Formulation, J. Atmosperic Sciences, 1998, vol. 55, p. 465.

    Article  ADS  Google Scholar 

  28. Wilkinson, D.C., NOAA’s Spacecraft Anomaly Database and Examples of Solar Activity Affecting Spacecraft, J. Spacecraft, 1991, vol. 31, p. 160.

    Article  Google Scholar 

  29. Goldstein, M.L., Morris, S.A., and Yen, G.G., Problems with Fitting to the Power-Law Distribution, The European Physical Journal B: Condensed Matter, 2004, vol. 41, no. 2, pp. 255–258.

    Article  ADS  Google Scholar 

  30. Corral, A., Renormalization-Group Transformations and Correlations of Seismicity, Phys. Rev. Lett., 2005, vol. 95.

  31. Saichev, A. and Sornetto, D., Universal Distribution of Interearthquake Times Explained, Phys. Rev. Lett., 2006, vol. 97.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.M. Karimova, O.A. Kruglun, N.G. Makarenko, N.V. Romanova, 2011, published in Kosmicheskie Issledovaniya, 2011, Vol. 49, No. 5, pp. 470–475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimova, L.M., Kruglun, O.A., Makarenko, N.G. et al. Power law distribution in statistics of failures in operation of spacecraft onboard equipment. Cosmic Res 49, 458–463 (2011). https://doi.org/10.1134/S0010952511040058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952511040058

Keywords

Navigation