Skip to main content
Log in

Structure of the earth’s magnetosheath at small fluctuations in the interplanetary magnetic field direction

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Spatial structure of the magnetosheath of the Earth was studied under the conditions when no sharp (more than 40° during 5 min) changes in the interplanetary magnetic field direction were observed. On the basis of 24 flights of the Interball-1 satellite through the magnetosheath, it is found that three regions differing from each other by parameters of the field and plasma can be observed in the magnetosheath under the above-indicated conditions. These regions also differ from the solar wind region before front of the Earth’s magnetospheric bow shock. Empirical distributions of parameters were studied in each region. Taking into account the influence of the interplanetary magnetic field direction on the processes in the magnetosheath, the cases of quasi-perpendicular and quasi-parallel shock waves were considered separately. The study showed that the distribution of parameters in the selected regions (in the solar wind before front of the bow shock, in the magnetosheath behind the bow shock (post-shock), in the region of the magnetosheath with minimal fluctuations in the field, and in the inner magnetosheath) differ from each other at any interplanetary magnetic field direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zastenker, G.N., Magnetosheath, in Plazmennaya geliogeofizika (Plasma Heliogeophysics), Zelenyi, L.M. and Veselovsky, I.S, Eds., Moscow: Fizmatlit, 2008, vol. 1,Ch. 4, p. 396.

    Google Scholar 

  2. Hubert, D., Lacombe, C., Harvey, C.C., et al., Nature, Properties, and Origin of Low-Frequency Waves from an Oblique Shock to the Inner Magnetosheath, J. Geophys. Res., 1998, vol. 103, p. 26783.

    Article  ADS  Google Scholar 

  3. Vaisberg, O.L. and Smirnov, V.N., The Earth’s Bow Shock, in Plazmennaya geliogeofizika (Plasma Heliogeophysics), Zelenyi, L.M. and Veselovsky, I.S, Eds., Moscow: Fizmatlit, 2008, vol. 1, p. 378.

    Google Scholar 

  4. Lacombe, C.F., Pantellini, G.E., Hubert, D., et al., Mirror and Alfvenic Waves Observed by ISEE during Crossings of the Earth’s Bow Shock, Ann. Geophys., 1992, vol. 10, no. 10, p. 772.

    ADS  Google Scholar 

  5. Shevyrev, N.N. and Zastenker, G.N., Nonlinear Oscillations of Magnetic Field in the Earth’s Magnetosheath behind the Quasi-Perpendicular Bow Shock, Izv. Ros. Akad. Nauk, Ser. Fiz., 2006, vol. 70, no. 10, p. 1537.

    Google Scholar 

  6. Narita, Y. and Glassmeier, K.-H., Dispersion Analysis of Low Frequency Waves through the Terrestrial Bow Shock, J. Geophys. Res., 2005, vol. 110, p. 12215.

    Article  Google Scholar 

  7. Denton, R.E., ULF Waves in the Magnetosheath, Geomagn. Aeron., 2000, vol. 2, no. 1, p. 45.

    Google Scholar 

  8. Pudovkin, M.I., Zaitseva, S.A., Lebedeva, V.V., et al., MHD-Modeling of the Magnetosheath, Planet. Space Sci., 2002, vol. 50, p. 473.

    Article  ADS  Google Scholar 

  9. Luhman, J.G., Russell, C.T., and Elphic, R.C., Spatial Distribution of Magnetic Field Fluctuations in the Dayside Magnetosheath, J. Geophys. Res., 1986, vol. 91, p. 1711.

    Article  ADS  Google Scholar 

  10. Shevyrev, N.N. and Zastenker, G.N., Some Features of the Plasma Flow in the Magnetosheath behind Quasi-Parallel and Quasi-Perpendicular Bow Shocks, Planet. Space Sci., 2005, vol. 53, p. 95.

    Article  ADS  Google Scholar 

  11. Shevyrev, N.N., Zastenker, G.N., Eiges, P.E., and Richardson, J.D., Low Frequency Waves Observed by Interball-1 in Foreshock and Magnetosheath, Adv. Space Res., 2006, vol. 37, no. 8, p. 1516.

    Article  ADS  Google Scholar 

  12. Du, J., Wang, C., Zhang, T.L., et al., Mirror Waves and Mode Transition Observed in the Magnetosheath by Double Star TC-1, Ann. Geophys., 2009, vol. 27, p. 351.

    Article  ADS  Google Scholar 

  13. Tsurutani, B.T. and Rodriguez, P., Upstream Waves and Particles: An Overview of ISEE Results, J. Geophys. Res., 1981, vol. 86, p. 4319.

    Article  ADS  Google Scholar 

  14. Kasaba, Y., Matsumoto, H., Omura, Y., et al., Statistical Studies of Plasma Waves and Backstreaming Electrons in the Terrestrial Electron Foreshock Observed by Geotail, J. Geophys. Res., 2000, vol. 105, p. 79.

    Article  ADS  Google Scholar 

  15. Constantinescu, O.D., Glassmeier, K.-H., Decreau, P.M.E., et al., Low Frequency Wave Sources in the Outer Magnetosphere Magnetosheath, and Near-Earth Solar Wind, Ann. Geophys., 2007, vol. 25, p. 2217.

    Article  ADS  Google Scholar 

  16. Balikhin, M.A., de Wit, T.D., Alleyne, H.S.C.K., et al., Experimental Determination of the Dispersion of Waves Observed upstream of a Quasi-Perpendicular Shock, Geophys. Res. Lett., 1997, vol. 24, p. 787.

    Article  ADS  Google Scholar 

  17. Song, P. and Russell, C.T., What Do We Really Know about the Magnetosheath?, Adv. Space Res., 1997, vol. 20, nos. 4/5, p. 747.

    Article  ADS  Google Scholar 

  18. Narita, Y. and Glassmeier, K.-H., Propagation Patterns of Low-Frequency Waves in the Terrestrial Magnetosheath, Ann. Geophys., 2006, vol. 24, p. 2114.

    Article  Google Scholar 

  19. Denton, R.E., Lessard, M.R., LaBelle, J.W., and Gary, S.P., Identification of Low-Frequency Magnetosheath Waves, J. Geophys. Res., 1998, vol. 103, p. 23661.

    Article  ADS  Google Scholar 

  20. Gutynska, O., Safrankova, J., and Nemecek, Z., Observations of Magnetosheath Fluctuations, in Proc. of 28-th ICPIG, Prague: Czech Republic, 2007.

    Google Scholar 

  21. Galeev, A.A., Galperin, Yu.I., and Zelenyi, L.M., The INTERBALL Project to Study Solar-Terrestrial Physics, Kosm. Issled., 1996, vol. 34, no. 4, pp. 339–362. [Cosmic Research, pp. 313–333].

    ADS  Google Scholar 

  22. Zastenker, G.N., Fedorov, A.O., Sharko, Yu.V., et al., Peculiarities of Usage of Integral Faraday Cups aboard the Interball-1 Satellite: Reduction of Photocurrent and Determination of Incoming Angles and Velocities of Ion Flux in the Solar Wind and Magnetosheath, Kosm. Issled., 2000, vol. 38, no. 1, pp. 23–30. [Cosmic Research, pp. 20–27].

    ADS  Google Scholar 

  23. Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic Flow around the Magnetosphere, Planet. Space Sci., 1966, vol. 14, p. 223.

    Article  ADS  Google Scholar 

  24. Shue, J.-A., Chao, J.K., Fu, H.C., et al., A New Functional Form to Study the Solar Wind Control of the Magnetopause Size and Shape, J. Geophys. Res., 1997, vol. 102, p. 9497.

    Article  ADS  Google Scholar 

  25. Lin, N., Engebretson, M.J., McPherron, R.L., et al., A Comparison of ULF Fluctuations in the Solar Wind, Magnetosheath, and Dayside Magnetosphere. 2. Field and Plasma Conditions in the Magnetosheath, J. Geophys. Res., 1991, vol. 96, p. 3455.

    Article  ADS  Google Scholar 

  26. Sonnerup, B.U.Oe. and Cahill, L.J., Jr., Magnetopause Structure and Attitude from Explorer 12 Observations, J. Geophys. Res., 1967, vol. 72, p. 171.

    Article  ADS  Google Scholar 

  27. Song, P., Russell, C.T., and Gary, S.P., Identification of Low Frequency Fluctuations in Terrestrial Magnetosheath, J. Geophys. Res., 1994, vol. 99, p. 6011.

    Article  ADS  Google Scholar 

  28. D’yakov, V.P., Ot teorii k praktike. Veivlety (Wavelets: From Theory to Practice), Moscow: Solon-R, 2002.

    Google Scholar 

  29. Bale, S.D. and Hull, A., Larson D.E., et al., Turbulence and Heating in Shock, Astrophys. J., 2002, vol. 575, p. L25.

    Article  ADS  Google Scholar 

  30. Okuda, H., Structure of the Magnetopause Current Layer at the Subsolar Point, J. Geophys. Res., 1992, vol. 92, no. A2, p. 1389.

    Article  ADS  Google Scholar 

  31. Gary, S.P. and Winske, D., Correlation Function Ratios and the Identification of Space Plasma Instabilities, J. Geophys. Res., 1992, vol. 97, p. 3103.

    Article  ADS  Google Scholar 

  32. Shevyrev, N.N., Zastenker, G.N., Nozdrachev, M.N., et al., High and Low Frequency Large Amplitude Variations of Plasma and Magnetic Field in the Magnetosheath: Radial Profile and Same Features, Adv. Space Res., 2003, vol. 31, no. 5, p. 1389.

    Article  ADS  Google Scholar 

  33. Barnes, A., Collisionless Damping of Hydromagnetic Waves, Phys. Fluids, 1966, vol. 9, p. 1483.

    Article  ADS  Google Scholar 

  34. Kennel, C.F. and Petschek, H., Limit on Stably Trapped Particle Fluxes, J. Geophys. Res., 1966, vol. 71, p. 1.

    ADS  Google Scholar 

  35. Barnes, A., Theory of Generation of Bow-Shock-Associated Hydromagnetic Waves in the Upstream Interplanetary Medium, Cosmic Electrodyn., 1970, vol. 1, p. 90.

    ADS  Google Scholar 

  36. Paschmann, G., Sckopke, N., Papamastorakis, I., et al., Characteristics of Reflected and Diffuse Ions upstream from the Earth’s Bow Shock, J. Geophys. Res., 1981, vol. 86, p. 4355.

    Article  ADS  Google Scholar 

  37. Gary, S.P., Theory of Space Plasma Microinstabilities, New York: Univ. of Cambridge, 1993, p. 181.

    Book  Google Scholar 

  38. Sckopke, N., Paschmann, G., Brinca, A.L., et al., Ion Thermalization in Quasi-Perpendicular Shocks Involving Reflected Ions, J. Geophys. Res., 1990, vol. 95, p. 6337.

    Article  ADS  Google Scholar 

  39. Denton, R.E., Gary, S.P., Xinlin, L., et al., Low-Frequency Fluctuations in the Magnetosheath near the Magnetopause, J. Geophys. Res., 1995, vol. 100, no. A4, p. 5665.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.M. Chugunova, V.A. Pilipenko, G.N. Zastenker, N.N. Shevyrev, 2011, published in Kosmicheskie Issledovaniya, 2011, Vol. 49, No. 4, pp. 291–301.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugunova, O.M., Pilipenko, V.A., Zastenker, G.N. et al. Structure of the earth’s magnetosheath at small fluctuations in the interplanetary magnetic field direction. Cosmic Res 49, 281–291 (2011). https://doi.org/10.1134/S0010952511040022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952511040022

Keywords

Navigation