Skip to main content
Log in

Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976–2000, have analyzed 798 geomagnetic storms with D st ≤ −50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/〈N〉 are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Statistical Study of Interplanetary Condition Effect on Geomagnetic Storms, Kosm. Issled., 2010, vol. 48, no. 6, pp. 499–515. [Cosmic Research, pp. 485–501].

    Google Scholar 

  2. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of Large-Scale Solar Wind Phenomena during 1976–2000, Kosm. Issled., 2009, vol. 47, no. 2, pp. 99–113. [Cosmic Research, pp. 81–94].

    Google Scholar 

  3. Yermolaev, Yu.I., Yermolaev, M.Yu., Lodkina, I.G., and Nikolaeva, N.S., Statistical Investigation of Heliospheric Conditions Resulting in Magnetic Storms, Kosm. Issled., 2007, vol. 45, no. 1, pp. 3–11. [Cosmic Research, pp. 1–8].

    Google Scholar 

  4. Yermolaev, Yu.I., Yermolaev, M. Yu., Lodkina, I.G., and Nikolaeva, N.S., Statistical Investigation of Heliospheric Conditions Resulting in Magnetic Storms, 2, Kosm. Issled., 2007, vol. 45, no. 6, pp. 489–498. [Cosmic Research, pp. 461–470].

    Google Scholar 

  5. Yermolaev, Yu.I., Yermolaev, M.Yu., Nikolaeva, N.S., and Lodkina, L.G., Interplanetary Conditions for CIR-Induced and MC-Induced Geomagnetic Storms, Bulg. J. Phys., 2007, vol. 34, pp. 128–135.

    Google Scholar 

  6. Twelfth International Solar Wind Conference, Saint-Malo, France, 21–26 June 2009, vol. 1216 of AIP Conference Proceedings, Maksimovic, M., Meyer-Vernet, N., Moncuquet, M., and Pantellini, F., Eds., 2010.

  7. Feldstein, Y.I., Modelling of the Magnetic Field of Magnetospheric Ring Current as a Function of Interplanetary Medium Parameters, Space Sci. Rev., 1992, vol. 59, pp. 83–165.

    Article  ADS  Google Scholar 

  8. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., et al., Interplanetary Origin of Geomagnetic Activity in the Declining Phase of the Solar Cycle, J. Geophys. Res., 1995, vol. 100, no. A11, pp. 21717–21733.

    Article  ADS  Google Scholar 

  9. Goncharova, M.Yu. and Maltsev, Yu.P., Correlation of the K p Index with the Solar-Wind Parameter, Geomagn. Aeron., 2001, vol. 41, no. 3, pp. 305–309.

    Google Scholar 

  10. Borovsky, J.E. and Funsten, H.O., Role of Solar Wind Turbulence in the Coupling of the Solar Wind to the Earth’s Magnetosphere, J. Geophys. Res., 2003, vol. 108, no. A6, p. 1246.

    Article  Google Scholar 

  11. D’Amicis, R., Bruno, R., and Bavassano, B., Is Geomagnetic Activity Driven by Solar Wind Turbulence?, Geophys. Res. Lett., 2007, vol. 34, p. L05108. doi: 1029/2006GL028896.

    Article  Google Scholar 

  12. Romanova, N., Pilipenko, V., Crosby, N., and Khabarova, O., ULF Wave Index and Its Possible Applications in Space Physics, Bulg. J. Phys., 2007, vol. 34, pp. 136–148.

    Google Scholar 

  13. Jankovicova, D., Voros, Z., and Simkanin, J., The Influence of Solar Wind Turbulence on Geomagnetic Activity, Nonlin. Processes Geophys., 2008, vol. 15, pp. 53–59.

    Article  ADS  Google Scholar 

  14. Badruddin, V.G., Interplanetary Structures and Solar Wind Behaviour during Major Geomagnetic Perturbations, J. Atmos. Terr. Phys., 2009, vol. 71, pp. 885–896.

    Article  Google Scholar 

  15. Yokoyama, N. and Kamide, Y., Statistical Nature of Geomagnetic Storms, J. Geophys. Res., 1997, vol. 102, no. A7, p. 14215.

    Article  ADS  Google Scholar 

  16. Kershengolts, S.Z., Barkova, E.S., and Plotnikov, I.Ya., Dependence of Geomagnetic Disturbances on Extreme Values of the Solar Wind E y Component, Geomagn. Aeron., 2007, vol. 46, no. 2, pp. 1–9.

    Google Scholar 

  17. Plotnikov, I.Ya. and Barkova, E.S., Advances in Space Research Nonlinear Dependence of D st and AE Indices on the Electric Field of Magnetic Clouds, Adv. Space Res., 2007, vol. 40, pp. 1858–1862.

    Article  ADS  Google Scholar 

  18. King, J.H. and Papitashvili, N.E., Solar Wind Spatial Scales in and Comparisons of Hourly Wind and ACE Plasma and Magnetic Field Data, J. Geophys. Res., 2004, vol. 110, no. A2, A02209. doi: 10.1029/2004JA010804.

    Google Scholar 

  19. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Relative Occurrence Rate and Geoeffectiveness of Large Scale Types of the Solar Wind, Kosm. Issled., 2010, vol. 48, no. 1, pp. 3–32. [Cosmic Research, pp. 1–30].

    Google Scholar 

  20. Lopez, R.E. and Freeman, J.W., Solar Wind Proton Temperature-Velocity Relationship, J. Geophys. Res., 1986, vol. 91, p. 1701.

    Article  ADS  Google Scholar 

  21. Dungey, J.W., Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 1961, no. 6, p. 47.

  22. Axford, W.I. and Hines, C.O., A Unifying Theory of High-Latitude Geophysical Phenomena and Geomagnetic Storms, Can. J. Phys., 1961, no. 39, p. 1433.

  23. Borovsky, J.E. and Denton, M.H., Differences between CME-Driven Storms and CIR-Driven Storms, J. Geophys. Res., 2006, vol. 111, A07S08. doi: 10.1029/2005JA011447.

    Article  Google Scholar 

  24. Denton, M.H., Borovsky, J.E., et al., Geomagnetic Storms Driven by ICME- and CIR Dominated Solar Wind, J. Geophys. Res., 2006, vol. 111, A07S07. doi: 10.1029/2005AJ011436.

    Article  Google Scholar 

  25. Despirak, I.V., Lubchich, A.A., Yahnin, A.G., et al., Development of Substorm Bulges during Different Solar Wind Structures, Ann. Geophys., 2009, vol. 27, no. 5, p. 1951.

    Article  ADS  Google Scholar 

  26. Huttunen, K.E.J., Koskinen, H.E.J., Karinen, A., and Mursula, K., Asymmetric Development of Magnetospheric Storms during Magnetic Clouds and Sheath Regions, Geophys. Res. Lett., 2006, vol. 33, L06107. doi: 10.1029/2005GL024894.

    Article  Google Scholar 

  27. Pulkkinen, T.I. Partamies, N., et al., Differences in Geomagnetic Storms Driven by Magnetic Clouds and ICME Sheath Regions, Geophys. Res. Lett., 2007, vol. 34, L02105. doi: 10.1029/2006GL027775.

    Article  Google Scholar 

  28. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, L.G., and Yermolaev, M.Yu., Specific Interplanetary Conditions for CIR-, Sheath-, ICME-induced Geomagnetic Storms Obtained by Double Superposed Epoch Analysis, Preprint http://arxiv.org/abs/0911.3315, 2009.

  29. Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and Energy Partitioning in CIR-Driven and CME-Driven Storms, J. Atmospheric and Solar-Terrestrial Physics, 2009, vol. 71, no. 10–11, pp. 1023–1031.

    Article  ADS  Google Scholar 

  30. Borovsky, J.E. and Denton, M.H. Magnetic field at geosynchronous orbit during high-speed stream-driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt, J. Geophys. Res., 2010, no. l15, A08217. doi: 10.1029/2009 JA015116.

  31. Khabarova, O.V. and Yermolaev, Yu.I. Solar wind parameters behavior before and after magnetic storms, J. Atmospheric and Solar-Terrestrial Physics, 2008, vol. 70, pp. 384–390. doi: 10.1016/j.jastp.2007.08.024.

    Article  ADS  Google Scholar 

  32. Weigel, R.S. Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 2010. doi: 10.1029/2009JA015062.

  33. Simms, L.E., Pilipenko, V. and Engebretson, M.J. Determining the Key Drivers of Magnetospheric Pc5 Wave Power, J. Geophys. Res., 2010. doi: 10.1029/2009JA015025.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Yermolaev.

Additional information

Original Russian Text © Yu.I. Yermolaev, I.G. Lodkina, N.S. Nikolaeva, M.Yu. Yermolaev, 2011, published in Kosmicheskie Issledovaniya, 2011, Vol. 49, No.1, pp. 24–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S. et al. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters. Cosmic Res 49, 21–34 (2011). https://doi.org/10.1134/S0010952511010035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952511010035

Keywords

Navigation