Skip to main content
Log in

Algebra and statistics of the solar wind

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Statistical studies of properties of the solar wind and interplanetary magnetic field, based on an extended database for the period 1963–2007 including four solar cycles, show that the Gaussian approximation well suites for some parameters as the probability distribution of their numerical values, while for others the lognormal law is preferred. This paper gives an interpretation of these results as associated with predominance of linear or nonlinear processes in composition and interaction of various disturbances and irregularities propagating and originating in the interior of the Sun and its atmosphere, including the solar corona and the solar wind running away from it. Summation of independent random components of disturbances leads, according to the central limit theorem of the probability theory, to the normal (Gaussian) distributions of quantities proper, while their multiplication leads to the normal distributions of logarithms. Thus, one can discuss the algebra of events and associate observed statistical distinctions with one or another process of formation of irregularities in the solar wind. Among them there are impossible events (having null probability) and reliable events (occurring with 100% probability). For better understanding of the relationship between algebra and statistics of events in the solar wind further investigations are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics of the Inner Heliosphere I, Schwenn R., and Marsch E., Eds., Berlin: Springer, 1990.

    Google Scholar 

  2. Burlaga, L.F., Interplanetary Magnetohydrodynamics, New York: Oxford Univ. Press, 1995.

    Google Scholar 

  3. King, J.H., On the Enhancement of the IMF Magnitude during 1978–1979, J. Geophys. Res., 1981, vol. 86, no. A6, pp. 4828–4830.

    Article  ADS  Google Scholar 

  4. King, J.H. and Papitashvili, N.E., Solar Wind Spatial Scales in and Comparisons of Hourly Wind and ACE Plasma and Magnetic Field Data, J. Geophys. Res., 2005, vol. 110, A02104. doi: 10.1029/2004JA010649.

    Article  Google Scholar 

  5. Veselovsky, I.S., Dmitriev, A.V., and Suvorova, A.V., Average Parameters of the Solar Wind and Interplanetary Magnetic Field at the Earth’s Orbit over the Last Three Cycles, Astron. Vestn., 1998, vol. 32, no. 4, pp. 352–358.

    Google Scholar 

  6. Veselovsky, I.S., Dmitriev, A.V., Panasenko, O.A., and Suvorova, A.V., Solar Cycles in the Energy and Mass Outputs of the Heliospheric Plasma, Astronomy Reports, 1999, vol. 3, pp. 485–486.

    ADS  Google Scholar 

  7. Veselovsky, I.S., Dmitriev, A.V., Orlov, Yu.V., et al., The Structure of Long-Term Variations of Plasma and Magnetic Field Parameters in Near-Earth Heliosphere, Astron. Vestn., 2000, vol. 34, no. 1, pp. 131–138.

    Google Scholar 

  8. Veselovsky, I.S., Dmitriev, A.V., Orlov, Yu.V., et al., Modeling the Statistical Distributions in the Space of Parameters of the Solar Wind and Interplanetary Magnetic Field with the Use of Artificial Neural Networks, Astron. Vestn., 2000, vol. 34, no. 2, pp. 82–93.

    Google Scholar 

  9. Veselovsky I.S., Dmitriev A.V., Suvorova A.V., and Panassenko O.A. Statistical and Spectral Properties of the Heliospheric Plasma and Magnetic Fields at the Earth’s Orbit, Preprint of the Institute of Nuclear Physics, Moscow State University, Moscow, 1998, no. 98-18/519.

  10. Veselovsky, I.S. and Tarsina, M.V., Rhythmic and Arrhythmic Changes of Conditions in the Near-Earth Heliosphere, in Atlas vremennykh variatsii prirodnykh, antropogennykh i sotsial’nykh protsessov. T. 3. Prirodnye i sotsial’nye sfery kak chasti okruzhayushchei sredy i kak ob”ekty vozdeistvii (Atlas of Time Variations in Natural, Anthropogenic, and Social Processes. Vol. 3: Natural and Social Spheres as Parts of Environment and as Objects of Impact), Moscow: Yanus-K, 2002, pp. 457–464.

    Google Scholar 

  11. Dmitriev, A.V., Suvorova, A.V., and Veselovsky, I.S., Expected Hysteresis of the 23-rd Solar Cycle in the Heliosphere, Adv. Space Res., 2002, vol. 29, no. 3, pp. 475–479.

    Article  ADS  Google Scholar 

  12. Veselovsky, I.S. and Tarsina, M.V., Intrinsic Nonlinearity of the Solar Cycles, Adv. Space Res., 2002, vol. 29, no. 3, pp. 417–420.

    Article  ADS  Google Scholar 

  13. Dmitriev, A.V., Chao, J.-K., Suvorova, A.V., et al., Indirect Estimation of the Solar Wind Conditions in 29-31 October 2003, J. Geophys. Res., 2005, vol. 110, A09S02. doi: 10.1029/2004JA010806.

    Article  Google Scholar 

  14. Dmitriev, A.V., Veselovsky, I.S., and Yakovchuk, O.S., Problems of Consistency of Data on the Solar Wind in Databases OMNI and OMNI-2, in Solnechnaya aktivnost’ kak faktor kosmicheskoi pogody. Trudy 9-oi Mezhdunarodnoi konferentsii po fizike Solntsa. Sankt-Peterburg. 4–9 iyulya 2005 g (Solar Activity as a Factor of Space Weather. Proc. 9th Intern. Conf. of Solar Physics, St. Petersburg, July 4–9, 2005), St. Petersburg: VVM, 2005, pp. 51–56.

    Google Scholar 

  15. Mood, A.M., Graybill, F.A., and Boes, D.C., Introduction to the Theory of Statistics, Singapore: McGraw-Hill, 1974.

    MATH  Google Scholar 

  16. Deeming, T.J., Fourier Analysis with Unequally-Spaced Data, Astrophys. and Space Sci., 1975, vol. 36, pp. 137–158.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Hartlep, T., Matthaeus, W., Padhye, N., et al., Magnetic Field Strength Distribution in Interplanetary Turbulence, J. Geophys. Res., 2000, vol. 105, no. A3, pp. 5135–5139.

    Article  ADS  Google Scholar 

  18. Veselovsky I.S., Dmitirev A.V., Suvorova A.V., and Panassenko O.A., Plasma and Magnetic Field Parameters in the Heliosphere at the Earth’s Orbit, Preprint of the Institute of Nuclear Physics, Moscow State University, Moscow, 1998, no. 98-18/519.

  19. Burlaga, L.F. and Lazarus, A., Lognormal Distributions and Spectra of Solar Wind Plasma Fluctuations: Wind 1995–1998, J. Geophys. Res., 2000, vol. 105, no. A2, pp. 2357–2364.

    Article  ADS  Google Scholar 

  20. Ipavich, F., Galvin, A.B., Lasley, S.E., et al., Solar Wind Measurements with SOHO: The CELIAS/MTOF Proton Monitor, J. Geophys. Res., 1998, vol. 103, no. A8, pp. 17205–17213.

    Article  ADS  Google Scholar 

  21. Richardson, I., Berdichevsky, D., Desch, M., et al., Solar-Cycle Variation of Low Density Solar Wind during More Than Three Solar Cycles, Geophys. Res. Lett., 2000, vol. 27, no. 23, pp. 3761–3764.

    Article  ADS  Google Scholar 

  22. Lazarus, A.J., The Day the Solar Wind Almost Disappeared, Science, 2000, vol. 287, no. 5461, pp. 2172–2173.

    Article  Google Scholar 

  23. Janardhan, P., Fujiki, K., Sawant, H.S., et al., Source Regions of Solar Wind Disappearance Events, J. Geophys. Res., 2008, vol. 113, A03102. doi: 10.1029/2007JA012608.

    Article  Google Scholar 

  24. Crooker, N., Shodhan, S., Gosling, J., et al., Density Extremes in the Solar Wind, Geophys. Res. Lett., 2000, vol. 27, no. 23, pp. 3769–3772.

    Article  ADS  Google Scholar 

  25. Usmanov, A.V., Goldstein, M.L., Ogilvie, K.W., et al., Low-Density Anomalies and Sub-Alfvenic Solar Wind, J. Geophys. Res., 2005, vol. 110, A01106. doi: 10.1029/2004JA010699.

    Article  Google Scholar 

  26. Borrini, G., Gosling, J., Bame, S., et al., Helium Abundance Enhancements in the Solar Wind, J. Geophys. Res., 1982, vol. 87, no. A9, pp. 7370–7378.

    Article  ADS  Google Scholar 

  27. Bothmer, V. and Schwenn, R., The Interplanetary and Solar Causes of Major Geomagnetic Storms, J. Geomagn. Geoelectr., 1995, vol. 47, pp. 1127–1132.

    Google Scholar 

  28. Dal Lago, A., Gonzalez, W.D., de Gonzalez, A.L.C., et al., Compression of Magnetic Clouds in Interplanetary Space and Increase in Their Geoeffectiveness, J. Atmosph. Solar Terrest. Phys., 2001, vol. 63, pp. 451–455.

    Article  ADS  Google Scholar 

  29. Burlaga, L.F., Fitzenreiter, R., Lepping, R., et al., A Magnetic Cloud Containing Prominence Material: January 1997, J. Geophys. Res., 1998, vol. 103, no. A1, pp. 277–285.

    Article  ADS  Google Scholar 

  30. Lopez, R., Solar Cycle Invariance in Solar Wind Proton Temperature Relationships, J. Geophys. Res., 1987, vol. 92, no. A10, pp. 11189–11194.

    Article  ADS  Google Scholar 

  31. Freeman, J. and Lopez, R., The Cold Solar Wind, J. Geophys. Res., 1985, vol. 90, no. A10, pp. 9885–9887.

    Article  ADS  Google Scholar 

  32. Lopez, R. and Freeman, J., Solar Wind Proton Temperature-Velocity Relationship, J. Geophys. Res., 1986, vol. 91, no. A2, pp. 1701–1705.

    Article  ADS  Google Scholar 

  33. Richardson, I.G. and Cane, H.V., Regions of Abnormally Low Proton Temperature in the Solar Wind (1965–1991) and Their Association with Ejecta, J. Geophys. Res., 1995, vol. 100, no. A12, pp. 23397–23412.

    Article  ADS  Google Scholar 

  34. Burlaga, L.F., Fitzenreiter, R., Lepping, R., et al., A Magnetic Cloud Containing Prominence Material: January 1997, J. Geophys. Res., 1998, vol. 103, no. A1, pp. 277–285.

    Article  ADS  Google Scholar 

  35. McComas, D.J., Elliott, H.A., Schwadron, N.A., et al., The Three-Dimensional Solar Wind around Solar Maximum, Geophys. Res. Lett., 2003, vol. 30, no. 10, p. 1517. doi: 10.1029/2003GL017136.

    Article  ADS  Google Scholar 

  36. Skoug, R.M., Gosling, J.T., Steinberg, J.T., et al., Extremely High Speed Solar Wind: 29–30 October 2003, J. Geophys. Res., 2004, vol. 109, A09102. doi: 10.1029/2004JA010494.

    Article  Google Scholar 

  37. Smith, E., The Heliospheric Current Sheet, J. Geophys. Res., 2001, vol. 106, no. A8, pp. 15819–15831.

    Article  ADS  Google Scholar 

  38. Veselovsky, I.S., Persiantsev, I.G., Ryazanov, A.Yu., and Shugai, Yu.S., One-Parameter Representation of the Daily Averaged Solar-Wind Velocity, Solar System Research, 2006, vol. 40, no. 5, pp. 427–431. doi: 10.1134/S0038094606050078.

    Article  ADS  Google Scholar 

  39. Vrsnak, B., Temmer, M., and Veronig, A.M., Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters, Solar Phys., 2007, vol. 240, pp. 315–330. doi: 10.1007/s11207-007-0285-8.

    Article  ADS  Google Scholar 

  40. Ogilvie, K., Coplan, M., and Zwickl, R., Helium, Hydrogen, and Oxygen Velocities Observed on ISEE 3, J. Geophys. Res., 1982, vol. 87, no. A9, pp. 7363–7369.

    Article  ADS  Google Scholar 

  41. Aellig, M., Lazarus, A., and Steinberg, J., The Solar Wind Helium Abundance: Variation with Wind Speed and the Solar Cycle, Geophys. Res. Lett., 2001, vol. 28, no. 14, pp. 2767–2770.

    Article  ADS  Google Scholar 

  42. Borrini, G., Gosling, J., Bame, S., et al., Solar Wind Helium and Hydrogen Structure near the Heliospheric Current Sheet: A Signal of Coronal Streamers at 1 AU, J. Geophys. Res., 1981, vol. 86, no. A6, pp. 4565–4573.

    Article  ADS  Google Scholar 

  43. Dmitriev, A.V., Suvorova, A.V., and Veselovsky, I.S., Solar Wind and Interplanetary Magnetic Field Parameters at the Earth’s Orbit during Three Solar Cycles, Phys. Chem. of the Earth, Part C 2002, vol. 25, nos. 1–2, pp. 125–128.

    ADS  Google Scholar 

  44. Dmitriev, A.V., Suvorova, A.V., Chao, J.-K., and Yang, Y.-H., Dawn-Dusk Asymmetry of Geosynchronous Magnetopause Crossings, J. Geophys. Res., 2004, vol. 109, A05203. doi: 10.1029/2003JA010171.

    Article  Google Scholar 

  45. Dmitriev, A.V., Veselovsky, I.S., and Suvorova, A.V., Comparison of Heliospheric Conditions near the Earth during Four Recent Solar Maxima, Adv. Space Res., 2005, vol. 36, pp. 2339–2344.

    Article  Google Scholar 

  46. Burlaga, L.F. and King, J., Intense Interplanetary Magnetic Fields Observed by Geocentric Spacecraft during 1963–1975, J. Geophys. Res., 1979, vol. 84, no. A11, pp. 6633–6640.

    Article  ADS  Google Scholar 

  47. Burlaga, L.F. and Ness, N., Magnetic Field Strength Distributions and Spectra in the Heliosphere and Their Significance for Cosmic Ray Modulation: Voyager 1. 1980–1994, J. Geophys. Res., 1998, vol. 103, no. A12, pp. 29719–29732.

    Article  ADS  Google Scholar 

  48. Burlaga, L.F., Lognormal and Multifractal Distributions of the Heliospheric Magnetic Field, J. Geophys. Res., 2001, vol. 106, no. A8, pp.15917–15927.

    Article  ADS  Google Scholar 

  49. Feynman, J. and Ruzmaikin, A., Distributions of the Interplanetary Magnetic Field Revisited, J. Geophys. Res., 1994, vol. 99, no. A9, pp. 17645–17651.

    Article  ADS  Google Scholar 

  50. Hartlep, T., Matthaeus, W., Padhye, N., et al., Magnetic Field Strength Distribution in Interplanetary Turbulence, J. Geophys. Res., 2000, vol. 105, no. A3, pp. 5135–5139.

    Article  ADS  Google Scholar 

  51. Bieber, J., Chen, J., Matthaeus, W., Smith, C., et al., Long-Term Variations of Interplanetary Magnetic Field Spectra with Implications for Cosmic Ray Modulation, J. Geophys. Res., 1993, no. A3, pp. 3585–3603.

  52. Zurbuchen, T.H., Hefti, S., Fisk, L.A., et al., On the Origin of Microscale Magnetic Holes in the Solar Wind, J. Geophys. Res., 2001, vol. 106, no. A8, pp. 16001–16010.

    Article  ADS  Google Scholar 

  53. Burlaga, L.F. and Szabo, A., Fast and Slow Flows in the Solar Wind near the Ecliptic at 1 AU?, Space Sci. Rev., 1999, vol. 87, pp. 137–140.

    Article  ADS  Google Scholar 

  54. Burlaga, L.F., Behannon, K., Klein, L., et al., Compound Streams, Magnetic Clouds, and Major Geomagnetic Storms, J. Geophys. Res., 1987, vol. 92, no. A6, pp. 5725–5734.

    Article  ADS  Google Scholar 

  55. Owens, M.J. and Cargill, P.J., Correlation of Magnetic Field Intensities and Solar Wind Speeds of Events Observed by ACE, J. Geophys. Res., 2002, vol. 107, no. A5, p. 1050. doi: 10.1029/2001JA000238.

    Article  Google Scholar 

  56. Owens, M.J., Cargill, P.J., Pagel, G.L., et al., Characteristic Magnetic Field and Speed Properties of Interplanetary Coronal Mass Ejections and Their Sheath Regions, J. Geophys. Res., 2005, vol. 110, A01105. doi: 10.1029/2004JA0010814.

    Article  Google Scholar 

  57. Bothmer, V. and Schwenn, R., The Interplanetary and Solar Causes of Major Geomagnetic Storms, J. Geomagn. Geoelectr., 1995, vol. 47, pp. 1127–1132.

    Google Scholar 

  58. Dal Lago, A., Gonzalez, W.D., de Gonzalez, A.L.C., et al., Compression of Magnetic Clouds in Interplanetary Space and Increase in Their Geoeffectiveness, J. Atmosph. Solar Terrest. Phys., 2001, vol. 63, pp. 451–455.

    Article  ADS  Google Scholar 

  59. Luhmann, J., Zhang, T.-L., Petrinec, S., et al., Solar Cycle 21 Effects on the Interplanetary Magnetic Field and Related Parameters at 0.7 and 1.0 AU, J. Geophys. Res., 1993, vol. 98, no. A4, pp. 5559–5572.

    Article  ADS  Google Scholar 

  60. Belcher, J. and Davis, L., Jr., Large-Amplitude Alfven Waves in the Interplanetary Medium, 2, J. Geophys. Res., 1971, vol. 76, no. 16, pp. 3534–3563.

    Article  ADS  Google Scholar 

  61. Tsurutani, B. and Gonzalez, W., The Cause of High-Intensity Long-Duration Continuous AE Activity (HILDCAAS): Interplanetary Alfven Wave Trains, Planet. Space Sci., 1987, vol. 35, no. 4, pp. 405–412.

    Article  ADS  Google Scholar 

  62. Tsurutani, B., Gonzalez, W., Gonzalez, A., et al., Interplanetary Origin of Geomagnetic Activity in the Declining Phase of the Solar Cycle, J. Geophys. Res., 1995, vol. 100, no. A11, pp. 21717–21733.

    Article  ADS  Google Scholar 

  63. Burton, R.K., McPherron, R.L., and Russell, C.T., An Empirical Relationship between Interplanetary Conditions and Dst, J. Geophys. Res., 1975, vol. 89, p. 4204.

    Article  ADS  Google Scholar 

  64. Akasofu, S.-I., Interplanetary Energy Flux Associated with Magnetospheric Substorms, Planet. Space Sci., 1979, vol. 27, p. 425.

    Article  ADS  Google Scholar 

  65. Iijima, T. and Potemra, T.A., The Relationship between Interplanetary Quantities and Birkeland Current Densities, Geophys. Res. Lett., 1982, vol. 9, p. 442.

    Article  ADS  Google Scholar 

  66. Tsyganenko, N.A., Solar Wind Control of the Tail Lobe Magnetic Field as Deduced from Geotail, AMPTE/IRM, and ISEE 2 Data, J. Geophys. Res., 2000, vol. 105, p. 5517.

    Article  ADS  Google Scholar 

  67. Tsyganenko, N.A., Modeling the Inner Magnetosphere: The Asymmetric Ring Current and Region 2 Birkeland Currents Revisited, J. Geophys. Res., 2000, vol. 105, p. 27739.

    Article  ADS  Google Scholar 

  68. Tsurutani, B.T., Mannucci, A.J., Iijima, B., et al., Global Dayside Ionospheric Uplift and Enhancement Associated with Interplanetary Electric Fields, J. Geophys. Res., 2004, vol. 109, A08302. doi: 10.1029/2003JA010342.

    Article  Google Scholar 

  69. Veselovsky, I.S., Dmitriev, A.V., Panasenko, O.A., and Suvorova, A.V., Solar Cycles in the Energy and Mass Outputs of the Heliospheric Plasma, Astronomy Reports, 1999, vol. 43, no. 7, pp. 485–486.

    ADS  Google Scholar 

  70. Newbury, J.A., Russell, C.T., Phillips, J.L., et al., Electron Temperature in the Ambient Solar Wind: Typical Properties and a Lower Bound at 1 AU, J. Geophys. Res., 1998, vol. 103, pp. 9553–9566.

    Article  ADS  Google Scholar 

  71. Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic Flow around the Magnetosphere, Planet. Space Sci., 1966, vol. 14, p. 223.

    Article  ADS  Google Scholar 

  72. Dmitriev, A.V., Chao, J.-K., and Wu, D.-J., Comparative Study of Bow Shock Models Using Wind and Geotail Observations, J. Geophys. Res., 2003, vol. 108, no. A12, p. 1464. doi: 10.1029/2003JA010027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Veselovsky.

Additional information

Original Russian Text © I.S. Veselovsky, A.V. Dmitriev, A.V. Suvorova, 2010, published in Kosmicheskie Issledovaniya, 2010, Vol. 48, No. 2, pp. 115–130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselovsky, I.S., Dmitriev, A.V. & Suvorova, A.V. Algebra and statistics of the solar wind. Cosmic Res 48, 113–128 (2010). https://doi.org/10.1134/S0010952510020012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952510020012

Keywords

Navigation