Skip to main content
Log in

Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The paper is devoted to studying the mechanisms of formation of cyclones in the Earth’s atmosphere with the help of numerical modeling using the complete system of gas-dynamic equations. The results of modeling have shown that cyclones can appear in horizontal stratified shear flows of warm and wet air masses with horizontal direction of gradients of the wind velocity components as a result of small disturbances of pressure which can be produced by Rossby waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moiseev, S.S., Rutkevich, P.B., Tur, A.V., and Yanovskii, V.V., Vortex Dynamo in Convective Medium with Spiral Turbulence, Zh. Eksp. Teor. Fiz., 1988, vol. 94, no. 2, pp. 144–153.

    ADS  Google Scholar 

  2. Lupyan, E.A., Mazurov, A.A., Rutkevich, P.B., and Tur, A.V., Generation of Large-Scale Vortices under the Action of Spiral Turbulence of Convective Nature, Zh. Eksp. Teor. Fiz., 1992, no. 5(11), pp. 1540–1552

    ADS  Google Scholar 

  3. Lupyan, E.A., Mazurov, A.A., Rutkevich, P.B., and Tur, A.V., Scenarios of Development of Large-Scale Vortices in the Atmosphere, Dokl. Akad. Nauk, 1993, vol. 329, no. 6, pp. 720–722.

    Google Scholar 

  4. Rutkevich, P.B. and Moiseev, S.S., Evolution and Steady State of a Large-Scale Vortex Structure, Zh. Eksp. Teor. Fiz., 1996, vol. 109, no. 5, pp. 1634–1644.

    Google Scholar 

  5. Rutkevich, P.B., Equation of Vortex Instability Caused by Convective Turbulence and Coriolis Force, Zh. Eksp. Teor. Fiz., 1993, vol. 104, no. 6(12), pp. 4010–4020.

    Google Scholar 

  6. Challa, M. and Pfeffer, R., Formation of Atlantic Hurricanes from Cloud Clusters and Depressions, J. Atmos. Sci., 1990, vol. 47, p. 909.

    Article  ADS  Google Scholar 

  7. Montgomery, M. and Farrell, B., Tropical Cyclone Formation, J. Atmos. Sci., 1993, vol. 50, p. 285.

    Article  ADS  Google Scholar 

  8. Sharkov, E.A., Physical Mechanism of Genesis of Vortex Perturbations in Compressible Atmosphere Saturated with Water Vapor, Preprint of Space Research Institute, Russ. Acad. Sci.,, Moscow, 2004, no. 2102.

    Google Scholar 

  9. Rotunno, R. and Emanuel, K.A., An Air-Sea Interaction Theory for Tropical Cyclones. Part II, J. Atmos. Sci., 1987, vol. 44, pp. 542–561.

    Article  ADS  Google Scholar 

  10. Emanuel, K.A., Genesis and Maintenance of “Mediterranean Hurricanes”, Advances in Geosciences, 2005, vol. 2, pp. 217–220.

    Article  ADS  Google Scholar 

  11. Belotserkovskii, O.M., Mingalev, V.S., Mingalev, O.V., and Oparin, A.M., On a Mechanism of Origination of a Large-Scale Vortex in the Troposphere over Irregularly Heated Surface, Dokl. Akad. Nauk, 2006, vol. 410, no. 6, pp. 816–820.

    MATH  Google Scholar 

  12. Obukhov, A.M., Turbulentnost’ i dinamika atmosfery (Turbulence and Atmospheric Dynamics), Leningrad: Gidrometeoizdat, 1988.

    Google Scholar 

  13. Mingalev, I.V. and Mingalev, V.S., A Model of General Circulation of the Earth’s Lower and Middle Atmosphere at a Specified Temperature Distribution, Mat. Model., 2005, vol. 17, no. 5, pp. 24–40.

    MATH  Google Scholar 

  14. Trotsenko, A.N. and Fomin, B.A., Calculation of Characteristics of Thermal Radiation Transport Based on the Direct Integration Method, Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana, 1989, vol. 25, no. 1, pp. 106–109.

    ADS  Google Scholar 

  15. Belotserkovskii, O.M., Andrushchenko, V.A., and Shevelev, Yu.D., Dinamika prostranstvennykh vikhrevykh techenii v neodnorodnoi atmosfere. Vychislitel’nyi eksperiment (Dynamics of Spatial Eddy Flows in the Inhomogeneous Atmosphere: A Numerical Experiment), Moscow: Yanus-K, 2000.

    Google Scholar 

  16. Oparin, A.M., Numerical Modeling of the Problems Associated with Intense Development of Hydrodynamic Instabilities, in Novoe v chislennom modelirovanii: algoritmy, vychislitel’nyi eksperiment, rezul’taty (New Issues in Numerical Simulations: Algorithms, Computing Experiment, and Results), Moscow: Nauka, 2000.

    Google Scholar 

  17. Belotserkovskii, O.M., Kraginskii, L.M., and Oparin, A.M., Numerical Simulation of Three-Dimensional Flows in Stratified Atmosphere Caused by Strong Large-Scale Disturbances, Zh. Vychisl. Mat. i Mat. Fiz., 2003, vol. 43,issue 11, pp. 1744–1758.

    MathSciNet  Google Scholar 

  18. Belotserkovskii, O.M., Gushchin, V.A., and Kon’shin, V.N., Splitting Method for Studying the Flows of Stratified Liquid with a Free Surface, Zh. Vychisl. Mat. i Mat. Fiz., 1987, vol. 27, p. 594.

    MathSciNet  Google Scholar 

  19. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues, J. Geophys. Res., 2002, vol. 107, no. A12, pp. 1468–1483.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mingalev.

Additional information

Original Russian Text © O.M. Belotserkovskii, I.V. Mingalev, V.S. Mingalev, O.V. Mingalev, A.M. Oparin, V.M. Chechetkin, 2009, published in Kosmicheskie Issledovaniya, 2009, Vol. 47, No. 6, pp. 501–514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belotserkovskii, O.M., Mingalev, I.V., Mingalev, V.S. et al. Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes. Cosmic Res 47, 466–479 (2009). https://doi.org/10.1134/S0010952509060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952509060033

Keywords

Navigation