Skip to main content
Log in

Characteristics of thermal ion outflows in the polar cap according to data of the Interball-2 satellite

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Characteristics of polar wind fluxes at a height of ∼20000 km measured by the Hyperboloid mass-spectrometer installed onboard the Interball-2 satellite are presented in the paper. The characteristics are presented for the upwelling flows of ionospheric ions H+, He+, and O+ from the sunlit polar cap in the period of solar activity minimum. Orbit segments with minimal precipitation of magnetospheric ions and electrons were preliminarily selected, and the measurements where the fluxes of ions coming from the cusp/cleft were excluded as carefully as possible. Thus, the densities, field-aligned velocities, and temperatures of ions in the regions where fluxes of polar wind could be detected with the maximal probability degree are presented in the paper. It is found that cases when only H+ ions are reaching the detector are with high probability the polar wind outflows. Their characteristics agree well with the Tube-7 hydrodynamic model and are as follows: n ≈ 1.5 cm−3, V ∼ 21 km/s; T = 3500 K, and T = 2000 K. In cases when He+ and O+ ions are also detected, the temperatures are substantially higher than the model ones, and the measured field-aligned velocities of O+ fluxes are several times higher than the model ones. Moreover, it was revealed that the polar wind outflows are predominantly observed in the polar cap regions where the polar rain fluxes are very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dessler, A.J. and Michel, F.C., Plasma in the Geomagnetic Tail, J. Geophys. Res., 1966, vol. 71, pp. 1421–1426.

    ADS  Google Scholar 

  2. Banks, P.M. and Holzer, E.N., The Polar Wind, J. Geophys. Res., 1968, vol.73, pp. 6846–6854.

    Article  ADS  Google Scholar 

  3. Grigoriev, S.A., Zinin, L.V., Vasilenko, I.Yu., and Lynovsky, V.E., Multi-Ion One-Dimensional MHD Models of Upper Ionospjere Dynamics: 1. A Mathematical Ionospheric Model with Seven Positive ion Species,, Kosm. Issled., 1999, vol. 37, no. 5, pp. 451–462. [Cosmic Research, pp. 425–436.]

    Google Scholar 

  4. Demars, H.G. and Schunk, R.W., Seasonal and Solar Cycle Variations of the Polar Wind, J. Geophys. Res., 2001, vol. 106, pp. 8157–8168.

    Article  ADS  Google Scholar 

  5. Tam, S.W.Y., Yasseen, F, Chang, T., and Ganguli, S.B., Self-Consistent Kinetic Photoelectron Effects on the Polar Wind, Geophys. Res. Lett., 1995, vol. 22, pp. 2107–2110.

    Article  ADS  Google Scholar 

  6. Su, Y.-J., Horwitz, J.L., Wilson, G.R., et al., Self-Consistent Simulation of the Photoelectron-Driven Polar Wind from 120 km to 9Re Altitude, J. Geophys. Res., 1998, vol. 103, pp. 2279–2296.

    Article  ADS  Google Scholar 

  7. Barakat, A.R., Demars, H.G., and Schunk, R.W., Dynamic Features of the Polar Wind in the Presence of Hot Magnetospheric Electrons, J. Geophys. Res., 1998, vol. 103, pp. 29289–29303.

    Article  ADS  Google Scholar 

  8. Yau, A.W., Whalen, B.A., Peterson, W.K., and Shelley, E.G., Distribution of Upflowing Ionospheric Ions in the High-Altitude Polar Cap and Auroral Ionosphere, J. Geophys. Res., 1984, vol. 89, pp. 5507–5522.

    Article  ADS  Google Scholar 

  9. Abe, T., Whalen, B.A., Yau, A.W., et al., EXOS D (Akebono) Suprathermal Mass Spectrometer Observations of the Polar Wind, J. Geophys. Res., 1993, vol. 98, pp. 11191–11203.

    Article  ADS  Google Scholar 

  10. Abe, T., Watanabe, S., Whalen, B.A., et al., Observation of Polar Wind and Thermal Ion Outflow by Akebono/SMS, J. Geomagn. Geoelectr., 1996, vol. 48, pp. 319–325.

    Google Scholar 

  11. Abe, T., Yau, A.W., Watanabe, S., et al., Long-Term Variation of the Polar Wind Velocity, J. Geophys. Res., 2004, vol. 109. doi: 10.1029/2003JA010223.

  12. Burch, J.L., Mende, S.B., Mitchell, D.G., et al., Views of the Earth’s Magnetosphere with the IMAGE Satellite, Science, 2001, vol. 291, pp. 619–624.

    Article  ADS  Google Scholar 

  13. Reinisch, B.W., Haines, D.M., Bibl, K., et al., The Radio Plasma Imager Investigation on the IMAGE Spacecraft, Space Sci. Rev., 2000, vol. 91, pp. 319–359.

    Article  ADS  Google Scholar 

  14. Reinisch, B.W., Huang, X., Song, P., et al., Plasma Density Distribution along the Magnetospheric Field: RPI Observations from IMAGE, Geophys. Res. Lett., 2001, vol.28, pp. 4521–4524.

    Article  ADS  Google Scholar 

  15. Huang, X., Reinisch, B.W., Song, P., et al., Developing an Empirical Density Model of the Plasmasphere Using IMAGE/RPI Observations, Adv. Space Res., 2004, vol. 33, pp. 829–832.

    Article  ADS  Google Scholar 

  16. Nsumei, P.A., Huang, X., Reinisch, B.W., et al., Electron Density Distribution over the Northern Polar Region Deduced from IMAGE/Radio Plasma Imager Sounding, J. Geophys. Res., 2003, vol. 108. doi: 1029/2002JA009616.

  17. Chugunin, D.V., Zinin, L.V., Galperin, Yu.I., et al., Polar Wind Observations on the Nightside of the Polar Cap at Altitudes of 2–3 R E: Results of the Interball-2 Satellite, Kosm. Issled., 2002, vol. 40, no. 4, pp. 416–433. [Cosmic Research, pp. 387–403.]

    Google Scholar 

  18. Nsumei, P.A., Reinisch, B.W., Song, P., et al., Polar Cap Electron Density Distribution from IMAGE Radio Plasma Imager Measurements: Empirical Model with the Effects of Solar Illumination and Geomagnetic Activity, J. Geophys. Res., 2008, vol. 113. doi: 10.1029/2007JA012566.

  19. Su, Y.-J., Horwitz, J.L., Moore, T.E., et al., Polar Wind Survey with the Thermal Ion Dynamics Experiment/Plasma Source Instrument Suite aboard POLAR, J. Geophys. Res., 1998, vol. 103, pp. 29 305–29 337.

    ADS  Google Scholar 

  20. Elliott, H.A., Comfort, R.H., Craven, P.D., et al., Solar Wind Influence on the Oxygen Content of Ion Outflow in the High-Altitude Polar Cap during Solar Minimum Conditions, J. Geophys. Res., 2001, vol. 106, pp. 6067–6084.

    Article  ADS  Google Scholar 

  21. Carbary, J.F., A Kp-Based Model of Auroral Boundaries, Space Weather, 2005, vol. 3. doi: 10.1029/2005SW000162.

  22. Horita, R.E., Yau, A.W., Whalen, B.A., et al., Ion Depletion Zones in the Polar Wind: EXOS D Suprathermal Ion Mass Spectrometer Observations in the Polar Cap, J. Geophys. Res., 1993, vol. 98, pp. 11 439–11 448.

    Article  ADS  Google Scholar 

  23. Dubouloz, N., Berthelier, J.-J., Malingre, M., et al., Thermal Ion Measurements on Board INTERBALL Auroral Probe by the HYPERBOLOID Experiment, Ann. Geophys., 1998, vol. 16, pp. 1070–1085.

    Article  ADS  Google Scholar 

  24. Perraut, S., Roux, A., Darrouzet, F., et al., ULF Wave Measurements onboard the Interball Auroral Probe, Ann. Geophys., 1998, vol. 16, p. 1105.

    Article  ADS  Google Scholar 

  25. Pedersen, A., Solar Wind and Magnetosphere Plasma Diagnostics by Spacecraft Electrostatic Potential Measurements, Ann. Geophys., 1995, vol. 13, pp. 118–129.

    Article  ADS  Google Scholar 

  26. Escoubet, C.P., Pedersen, A., Schmidt, R., and Lindqvist, P.A., Density in the Magnetosphere Inferred from ISEE 1 Spacecraft Potential, J. Geophys. Res., 1997, vol. 102, pp. 17 595–17 610.

    Article  ADS  Google Scholar 

  27. Torkar, K., Jeszenszky, H., Veselov, M.V., et al., Spacecraft Potential Measurements on Board INTERBALL-2 Satellite and Derived Plasma Densities, Kosm. Issled., 1999, vol. 37, pp. 644–653. [Cosmic Research, pp. 606–614.]

    Google Scholar 

  28. Bouhram, M., Dubouloz, N., Hamelin, M., et al., Electrostatic Interaction between Interball-2 and the Ambient Plasma. 1. Determination of the Spacecraft Potential from Current Calculations, Ann. Geophys., 2002, vol. 20, pp. 365–376.

    Article  ADS  Google Scholar 

  29. Zinin, L.V., Galperin, Yu.I., Gladyshev, V.A., et al., Modeling of the Anisotropic Thermal Plasma Measurements of the Energy-Mass-Angle Ion Spectrometers Onboard a Charged Satellite, Kosm. Issled., 1995, vol. 33, no. 6, pp. 563–571. [Cosmic Research, pp. 511–518.]

    Google Scholar 

  30. Winningham J.D. and Heikkila, W.J., Polar Cap Auroral Electron Fluxes Observed with Isis 1, J. Geophys. Res., 1974, vol. 79, p. 949.

    Article  ADS  Google Scholar 

  31. Sauvaud, J.A., Barthe, H., Aousti, C., et al., The ION Experiment Energetic Ion Composition and Electron Energy Spectrometers for the Auroral Probe, in Interball Mission and Payload, RSA-IKI-CNES, 1995, pp. 268–283.

  32. Newell, P.T., Greenwald, R.A., and Ruohoniemi, J.M., The Role of the Ionosphere in Aurora and Space Weather, Rev. Geophys., 2001, vol. 39, pp. 137–149.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Chugunin, 2009, published in Kosmicheskie Issledovaniya, 2009, Vol. 47, No. 6, pp. 483–494.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugunin, D.V. Characteristics of thermal ion outflows in the polar cap according to data of the Interball-2 satellite. Cosmic Res 47, 449–459 (2009). https://doi.org/10.1134/S001095250906001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095250906001X

Keywords

Navigation