Skip to main content
Log in

Manifestation of configurations of magnetic clouds of the solar wind in geomagnetic activity

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

On the basis of an analysis of the data of multi-satellite observations of magnetic clouds at the path Venus-Earth, the dependence of their geoeffectiveness on the orientation in the ecliptic plane and position relative to the Sun-Earth line is determined in the paper. The cloud parameters were determined on the basis of the model of a force-free cylindrical flux rope. The search for magnetic clouds in the flow of data from the monitoring space vehicle was performed using a special-purpose computer program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bothmer, V. and Schwenn, R., The Structure and Origin of Magnetic Clouds in the Solar Wind, Ann. Geophys., 1998, vol. 16, pp. 1–24.

    Article  ADS  Google Scholar 

  2. Lepping, R.P., Jones, J.A., and Burlaga, L.F., Magnetic Field Structure of Interplanetary Magnetic Clouds at 1 AU, J. Geophys. Res., 1990, no. 95, p. 965.

  3. Burlaga, L., Sittler, E., Mariani, F., and Schwenn, N.R., Magnetic Loop behind an Interplanetary Shock: Voyager, Helios, and IMP 8 Observations, J. Geophys. Res., 1981, no. 86, pp. 6673–6684.

  4. Echer, E. and Gonzalez, W.D., Geoeffectiveness of Interplanetary Shocks, Magnetic Clouds, Sector Boundary Crossings and Their Combined Occurrence, Geophys. Res. Lett., 2004, vol. 31, no. L09808. doi: 10.1029/2003GL019199.

  5. Denton, M.H., et al., Geomagnetic Storms Driven by ICMEand CIR-Dominated Solar Wind, J. Geophys. Res., 2006, vol. 111, A07S07. doi: 10.1029/2005JA011436.

  6. Zhou, X. and Tsurutani, B.T., Interplanetary Shock Triggering of Nightside Geomagnetic Activity: Substorms, Pseudobreakups, and Quiescent Events, J. Geophys. Res., 2001, vol. 106, no. A9, p. 18957.

    Article  ADS  Google Scholar 

  7. Wu, C.C. and Lepping, R.P., Effects of Magnetic Clouds on the Occurrence of Geomagnetic Storms: The First 4 Years of Wind, J. Geophys. Res., 2002, vol. 107, p. 1314. doi: 10.1029/2001JA000161.

    Article  Google Scholar 

  8. Zhang, J., Liemohn, M.W., Kozyra, J.U., Lynch, B.J., and Zurbuchen, T.H., A Statistical Study of the Geoeffectiveness of Magnetic Clouds during High Solar Activity Years, J. Geophys. Res., 2004, vol. 109, A09101. doi: 10.1020/2004JA010410.

  9. Romashets, E.P. and Vandas, M., Dynamics of a Toroidal Magnetic Cloud in the Solar Wind, J. Geophys. Res., 2001, vol. 106, no. A6, pp. 10,615–10,624.

    Article  ADS  Google Scholar 

  10. Vandas, M., Odstrcil, D., and Watari, S., Three-Dimensional MHD Simulation of a Loop-Like Magnetic Cloud in the Solar Wind, J. Geophys. Res., 2002, vol. 107, no. A9, p. 1236. doi: 10.1029/2001JA005068.

    Article  Google Scholar 

  11. Vandas, M., Fischer, S., Dryer, M., et al., Simulation of Magnetic Cloud Propagation in the Inner Heliosphere in Two-Dimensions: 1. A Loop Perpendicular to the Ecliptic Plane, J. Geophys. Res., 1995, vol. 100, no. A7, pp. 12,285–12,292.

    Article  ADS  Google Scholar 

  12. Vandas, M., Fischer, S., Dryer, M., et al., Simulation of Magnetic Cloud Propagation in the Inner Heliosphere in Two-Dimensions: 2. A Loop Parallel to the Ecliptic Plane and the Role of Helicity, J. Geophys. Res., 1996, vol. 101, no. A2, pp. 2505–2510.

    Article  ADS  Google Scholar 

  13. Hidalgo, M.A., Nieves-Chinchilla, T., and Cid, C., Elliptical Cross-Section Model for the Magnetic Topology of Magnetic Clouds, Geophys. Res. Lett., 2002, vol. 29, no. 13, p. 1637. doi: 10.1029/2001GL013875.

    Article  ADS  Google Scholar 

  14. Hidalgo, M.A., A Study of the Expansion and Distortion of the Cross Section of Magnetic Clouds in the Interplanetary Medium, J. Geophys. Res., 2003, vol. 108, no. A8, p. 1320. doi: 10.1029/2002JA009818.

    Article  Google Scholar 

  15. Hidalgo, M.A., Vinas, A.F., and Sequeiros, J., A Non-Force-Free Approach to the Topology of Magnetic Clouds in the Solar Wind, J. Geophys. Res., 2002, vol. 106, no. A1, p. 1002. doi: 10.1029/2001JA900100.

    Article  Google Scholar 

  16. Mulligan, T. and Russell, C., Multispacecraft Modeling of the Flux Rope Structure of Interplanetary Coronal Mass Ejections: Cylindrically Symmetric versus Nonsymmetric Topologies, J. Geophys. Res., 2001, vol. 106, no. A6, pp. 10,581–10,596.

    Article  ADS  Google Scholar 

  17. Du, D., Wang, C., and Hu, Q., Propagation and Evolution of a Magnetic Cloud from ACE to Ulysses, J. Geophys. Res., 2007, vol. 112, p. A09101. doi: 10.1029/2007JA012482.

    Article  Google Scholar 

  18. Lundquist, S., Magnetohydrostatic Fields, Ark. Fys., 1950, no. 2, pp. 361–365.

  19. Lindsay, G.M., Luhmann, J.G., Russell, C.T., and Gosling, J.T., Relationships between Coronal Mass Ejection Speeds from Coronagraph Images and Interplanetary Characteristics of Associated Interplanetary Coronal Mass Ejections, J. Geophys. Res., 1999, vol. 104, no. A6, pp. 12,515–10,523.

    Article  ADS  Google Scholar 

  20. Solnechnye dannye (Solar Data), Leningrad: Nauka, 1980 (no. 10); 1981 (no.7); 1982 (no.4); 1984 (nos. 1 and 2); 1985 (nos. 4 and 6); 1988 (no. 3).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Barkhatov, E.A. Kalinina, A.E. Levitin, 2009, published in Kosmicheskie Issledovaniya, 2009, Vol. 47, No. 4, pp. 300–310.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkhatov, N.A., Kalinina, E.A. & Levitin, A.E. Manifestation of configurations of magnetic clouds of the solar wind in geomagnetic activity. Cosmic Res 47, 268–278 (2009). https://doi.org/10.1134/S0010952509040029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952509040029

PACS

Navigation