Advertisement

Cosmic Research

, Volume 47, Issue 3, pp 251–258 | Cite as

Effect of parametric and nonlinear perturbations on statistical dynamics of the Earth’s pole

  • Yu. G. Markov
  • I. N. Sinitsyn
  • M. L. Kiselev
Article

Abstract

We study the influence of additive and parametric slowly varying harmonic (at the Chandler frequency and doubled frequency) and stochastic Gaussian broadband perturbations on mathematical expectations, variances, and covariations of oscillations of the Earth’s pole. The influence of perturbations on both regular and irregular stochastic oscillations is considered in detail. Results of numerical experiments are presented. The developed models and software are included into information resources on the fundamental problem “Statistical dynamics of the Earth’s rotation” of Russian Academy of Sciences.

PACS

91.10.Nj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IERS Annual Reports, 2000, 2001, 2002, Frankfurt am Mein: BKG, 2001–2003.Google Scholar
  2. 2.
    Munk, W.H., and Macdonald, G.J.F., The Rotation of the Earth: A Geophysical Discussion, New York: Cambridge Univ. Press, 1961. Translated under the title Vrashchenie Zemli, Moscow: Mir, 1964.Google Scholar
  3. 3.
    Moritz, H. and Mueller, I., Earth Rotation: Theory and Observation, New York: Ungar, 1987. Translated under the title Vrashchenie Zemli: teoriya i nablyudeniya, Kiev: Nauk. dumka, 1992.Google Scholar
  4. 4.
    Akulenko, L.D., Kumakshev, S.A., Markov, Yu.G., and Rykhlova, L.V., Gravitational Tidal Mechanism of Oscillations of the Earth’s Pole, Astron. Zh., 2005, vol. 82, no. 10, pp. 950–960.Google Scholar
  5. 5.
    Markov, Yu.G. and Sinitsyn, I.N., Fluctuation Dissipative Model of Motion of the Pole of Deformable Earth, Dokl. Akad. Nauk, 2002, vol. 387, no. 4, pp. 482–486.MathSciNetGoogle Scholar
  6. 6.
    Markov, Yu.G. and Sinitsyn, I.N., Distribution of Fluctuations in the Earth’s Pole Motion, Dokl. Akad. Nauk, 2003, vol. 390, no. 3, pp. 343–346.Google Scholar
  7. 7.
    Markov, Yu.G. and Sinitsyn, I.N., Effect of Parametric Fluctuation-Dissipative Forces on the Earth’s Pole Motion, Dokl. Akad. Nauk, 2004, vol. 395, no. 1, pp. 51–54.Google Scholar
  8. 8.
    Markov, Yu.G. and Sinitsyn, I.N., Chandler Oscillations of the Earth’s Pole at Parametric Perturbations, Dokl. Akad. Nauk, 2006, vol. 410, no. 4, pp. 1–3.MathSciNetGoogle Scholar
  9. 9.
    Markov, Yu.G. and Sinitsyn, I.N., A Stochastic Model of Oscillations of the Earth’s Pole with Parametric Perturbations, Dokl. Akad. Nauk, 2007, vol. 717, no. 2, pp. 198–201.Google Scholar
  10. 10.
    Markov, Yu.G. and Sinitsyn, I.N., Stochastic Correlation Models for the Motion of the Pole of the Deformable Earth, Kosm. Issled., 2004, vol. 42, no. 1, pp. 76–82. [Cosmic Research, pp. 72–78].Google Scholar
  11. 11.
    Markov, Yu.G., Dasaev, R.R., Perepelkin, V.V., et al., Stochastic Models of the Earth’s Rotation Taking the Effects of the Moon and Planets into Account, Kosm. Issled., 2005, vol. 43, no. 1, pp. 54–66. [Cosmic Research, pp. 52–64].Google Scholar
  12. 12.
    Sinitsyn, I.N., Correlation Methods for Constructing Analytical Information Models of Fluctuation of the Earth’s Pole Using a priori Data, Informatika i Ee Primenenie, 2007, no. 2, pp. 3–12.Google Scholar
  13. 13.
    Pugachev, V.S. and Sinitsyn, I.N., Teoriya stokhasticheskikh sistem (Theory of Stochastic Systems), Moscow: Logos, 2004.Google Scholar
  14. 14.
    Sinitsyn, I.N., Shortened Moment Equations of Statistical Dynamics of the Earth’s Pole Motion, in Sistemy i sredstva informatiki. Spetsial’nyi vypusk: Matematicheskie modeli v informatsionnykh tekhnologiyakh (Systems and Tools of Informatics, Special Issue: Mathematical Models in Information Technologies) Moscow: IPI RAN, 2006, pp. 24–46.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. G. Markov
    • 1
  • I. N. Sinitsyn
    • 2
  • M. L. Kiselev
    • 3
  1. 1.Moscow Institute of AviationMoscowRussia
  2. 2.Institute of Information ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Korolev Rocket and Space Corporation “Energiya@Korolev, Moscow oblastRussia

Personalised recommendations