Skip to main content
Log in

A comparison of measured parameters of magnetosheath plasma with predictions of a new magnetosheath-magnetosphere model

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A possibility of description of the properties of plasma flow in the magnetosheath using the INME hydrodynamical model is considered on the basis of a comparison with experimental data. This model is characterized by a high degree of self-consistency and, in particular, makes it possible to determine positions of the boundaries of the magnetosheath (the bow shock and magnetopause) using the interplanetary medium parameters. For two considered passages of the magnetosheath by the Interball-1 satellite, a good quantitative agreement of the measured parameters with the model calculation is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, P. and Russell, C.T., What Do We Really Know about the Magnetosheath?, Adv. Space Res., 1997, vol. 20, nos. 4/5, pp. 747–765.

    Article  ADS  Google Scholar 

  2. Schwartz, S.J., Burgess, D., and Moses, J.J., Low-Frequency Waves in the Earth’s Magnetosheath: Present Status, Ann. Geophys., 1996, vol. 14, pp. 1134–1150.

    Article  ADS  Google Scholar 

  3. Zastenker, G.N., Safrankova, J., Nemecek, Z., et al., Strong and Fast Variations of Parameters in the Magnetosheath: 1. Variations of Ion Flux and Other Plasma Characteristics, Kosm. Issled., 1999, vol. 37, no. 6, pp. 605–615.

    Google Scholar 

  4. Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic Flow around the Magnetosphere, Planet. Space Sci., 1966, vol. 14, pp. 223–253.

    Article  ADS  Google Scholar 

  5. Spreiter, J.R. and Stahara, S.S., A New Predictive Model for Determining Solar Wind-Terrestrial Planet Interactions, J. Geophys. Res., 1980, vol. 85, p. 6769.

    Article  ADS  Google Scholar 

  6. Zastenker, G.N. Nozdrachev, M.N., et al., Fast Solar Wind Plasma and Magnetic Field Variations in the Magnetosheath, Czech Journ. of Phys., 1999, vol. 49, no. 4a, pp. 579–590.

    ADS  Google Scholar 

  7. Zastenker, G.N., Nozdrachev, M.N., Safrankova, J., et al., Multispacecraft Measurements of Plasma and Magnetic Field Variations in the Magnetosheath: Comparison with Spreiter Models and Motion of the Structures, Planet. Space Sci., 2002, vol. 50, nos. 5–6, pp. 601–612.

    Article  ADS  Google Scholar 

  8. Nemecek, Z., Safrankova, J., Zastenker, G.N., et al., Observations of the Radial Magnetosheath Profile and a Comparison with Gasdynamic Model Predictions, Geophys. Res. Lett., 2000, vol. 27, no. 17, pp. 2801–2804.

    Article  ADS  Google Scholar 

  9. Nemecek, Z., Safrankova, J., Pisoft, P., and Zastenker, G.N., Statistical Study of Ion Flux Fluctuations in the Magnetosheath, Czech Journ. of Phys., 2001, vol. 51, no. 8, pp. 853–862.

    Article  ADS  Google Scholar 

  10. Nemecek, Z., Safrankova, J., Zastenker, G.N., et al., Low-Frequency Variations of the Ion Flux in the Magnetosheath, Planet. Space Sci., 2002, vol. 50, pp. 567–575.

    Article  ADS  Google Scholar 

  11. Shevyrev, N.N., Zastenker, G.N., Shafrankova, Ya., et al., Large and Fast Variations of Parameters in the Magnetosheath: 3. Amplitudes and Transverse Profiles of Low and High Frequency Variations of the Plasma and Magnetic Field, Kosm. Issled., 2002, vol. 40, no. 4, pp. 361–373.

    Google Scholar 

  12. Song, P., Russell, C.T., Gombosi, T.I., et al., On the Processes in the Terrestrial Magnetosheath. 1. Scheme Development, J. Geophys. Res., 1999, vol. 104, p. 345.

    Google Scholar 

  13. Song, P., Russell, C.T., Gombosi, T.I., et al., On the Processes in the Terrestrial Magnetosheath. 2. Case Study, J. Geophys. Res., 1999, vol. 104, p. 357.

    Google Scholar 

  14. Samsonov, A.A. and Hubert, D., The Steady-State Slow Shock inside the Earth’s Magnetosheath: To Be or not to Be? Part 2. Numerical 3-D MHD Modeling, J. Geophys. Res., 2004, vol. 109, p. A01218. doi:10.1029/2003JA010006.

    Article  Google Scholar 

  15. Erkaev, N.V., Results of Studying MHD Flowing around the Magnetosphere, Geomagn. Aeron., 1986, vol. 26, p. 595.

    Google Scholar 

  16. Farrugia, C.J., Biernat, H.K., Erkaev, N.V., et al., MHD Model of Magnetosheath Flow: Comparison with AMPTE/IRM Observations on 24 October, 1985, Ann. Geophys., 1998, vol. 16, pp. 518–527.

    Article  ADS  Google Scholar 

  17. Samsonov, A.A., Pudovkin, M.I., Gary, S.P., and Hubert, D., Anisotropic MHD Model of the Dayside Magnetosheath downstream of the Oblique Bow Shock, J. Geophys. Res., 2001, vol. 106, p. 699.

    Article  Google Scholar 

  18. Samsonov, A.A., Numerical Modeling of the Earth’s Magnetosheath for Different IMF Orientations, Adv. Space Res., 2006, vol. 38, no. (8), pp. 1652–1656.

    Article  ADS  MathSciNet  Google Scholar 

  19. Samsonov, A.A., Alexandrova, O., Lacombe, C., et al., Proton Temperature Anisotropy in the Magnetosheath: Comparison of 3-D MHD Modeling with Cluster Data, Ann. Geophys., 2007, vol. 25, no. 5, pp. 1157–1173.

    Article  ADS  Google Scholar 

  20. Kartalev, M.D., Nikolova, V.I., Kamenetsky, V.E., and Mastikov, I.P., On the Self-Consistent Determination of Dayside Magnetopause Shape and Position, Planet. Space Sci., 1996, vol. 44, pp. 1195–1208.

    Article  ADS  Google Scholar 

  21. Kartalev, M.D., Kaschiev, M.S., and Kojtchev D.K., Finite element numerical modeling of stationary two-damensional magnetosphere with defined boundary, J. Comput. Phys., 1995. vol. 119, pp. 220–230.

    Article  MATH  ADS  Google Scholar 

  22. Kartalev, M.D., Keremidarska, V.I., Grigorov, K.G., and Romanov, D.K., Near Real Time Determination of the Magnetopause and Bow Shock Shape and Position, ESA Publication, 2002, vol. 477, pp. 555–558.

    ADS  Google Scholar 

  23. Dobreva, P.S., Kartalev, M.D., Shevyrev, N.N., and Zastenker, G.N., Comparison of a New Magnetosphere — Magnetosheath Model with Interball-1 Magnetosheath Plasma Measurements, Planet. Space Sci., 2005, vol. 53, pp. 117–125.

    Article  ADS  Google Scholar 

  24. Dobreva, P., Shevyrev, N., Koval, A., et al., Interpretation of Satellite Magnetosheath Plasma Measurements by Use of a Magnetosheath-Magnetosphere Numerical Model, J. of Theoretical and Applied Mechanics, 2007.

  25. Tsyganenko, N.A., A Model of the Near Magnetosphere with a Dawn-Dusk Asymmetry 1. Mathematical Structure, J. Geophys. Res., 2002, vol. 107.

  26. Tsyganenko, N.A., Modeling the Earth’s Magnetospheric Magnetic Field Confined within a Realistic Magnetopause, J. Geophys. Res., 1995, vol. 100, pp. 5599–5612.

    Article  ADS  Google Scholar 

  27. Magomedov, K.M. and Kholodov, A.S., Setochno-kharakteristicheskie chislennye metody (Grid-Characteristic Numerical Methods), Moscow: Nauka, 1988.

    MATH  Google Scholar 

  28. Shue, J.-A., Chao, J.K., Fu, H.C., et al., A New Functional Form to Study the Solar Wind Control of the Magnetopause Size and Shape, J. Geophys. Res., 1997, vol. 102, p. 9497.

    Article  ADS  Google Scholar 

  29. Galeev, A.A., Galperin, Yu.I., and Zelenyi, L.M., The INTERBALL Project to Study Solar-Terrestrial Physics, Kosm. Issled., 1996, vol. 34, no. 4, pp. 339–362.

    ADS  Google Scholar 

  30. Kremnev, R.S., Smirnov, A.I., and Gorkin, S.S., Brief Description of the PROGNOZ-M2 Spacecraft in the INTERBALL Project, Kosm. Issled., 1996, vol. 34, no. 4, pp. 363–370.

    ADS  Google Scholar 

  31. Safrankova, J., Zastenker, G., Nemecek, Z., et al., Small Scale Observation of the Magnetopause Motion: Preliminary Results of the INTERBALL Project, Ann. Geophys., 1997, vol. 15, no. 5, p. 562.

    Article  ADS  Google Scholar 

  32. Zastenker, G.N., Fedorov, A.O., Sharko, Yu.V., et al., Peculiarities of Usage of Integral Faraday Cups aboard the Interball-1 Satellite: Reduction of Photocurrent and Determination of Incoming Angles and Velocities of Ion Flux in the Solar Wind and the Magnetosheath, Kosm. Issled., 2000, vol. 38, no. 1, pp. 23–30.

    ADS  Google Scholar 

  33. Koval, A., Safrankova, J., and Nemecek, Z., A Study of Particle Flows in Hot Flow Anomalies, Planet. Space Sci., 2005, vol. 53, nos. 1–3, pp. 41–52.

    Article  ADS  Google Scholar 

  34. Borodkova, N.L., Saibek, D.G., Zastenker, G.N., et al., Fast Deformation of Dayside Magnetopause, Kosm. Issled., 1998, vol. 36, no. 3, pp. 261–267.

    Google Scholar 

  35. Ogilvie, K.W. Chornay, D.J., et al., SWE, a Comprehensive Plasma Instrument for the Wind Spacecraft, Space Sci. Rev., 1995, vol. 71, pp. 41–54.

    Article  Google Scholar 

  36. Lepping, R.P., Acuna, M.H., et al., The WIND Magnetic Field Investigation, Space Sci. Rev., 1995, vol. 71, pp. 207–218.

    Article  ADS  Google Scholar 

  37. Southwood, D.J. and Kivelson, M.G., Magnetosheath Flow near the Subsolar Magnetopause: Zwan-Wolf and Southwood-Kivelson Theories Reconciled, Geophys. Res. Lett., 1995, vol. 22, pp. 3275–3278.

    Article  ADS  Google Scholar 

  38. Shevyrev, N.N. and Zastenker, G.N., Some Features of the Plasma Flow in the Magnetosheath behind Quasi-Parallel and Quasi-Perpendicular Bow Shocks, Planet. Space Sci., 2005, vol. 53, pp. 95–102.

    Article  ADS  Google Scholar 

  39. Ryazantseva, M.O., Dalin. P.A., Zastenker G.N., and Richardson J., Orientation of Sharp Fronts of the Solar Wind Plasma, Kosm. Issled., 2003, vol. 41, no. 4, pp. 395–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.N. Zastenker, M.D. Kartalev, P.S. Dobreva, N.N. Shevyrev, A. Koval, 2008, published in Kosmicheskie Issledovaniya, 2008, vol. 46, No. 6, pp. 499–513.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zastenker, G.N., Kartalev, M.D., Dobreva, P.S. et al. A comparison of measured parameters of magnetosheath plasma with predictions of a new magnetosheath-magnetosphere model. Cosmic Res 46, 469–483 (2008). https://doi.org/10.1134/S0010952508060014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952508060014

PACS

Navigation