Skip to main content
Log in

Variations of the magnetopause position versus the level of geomagnetic activity (according to data of the INTERBALL-1 Satellite for 1995–1997)

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The variations in the deviation of the observed position of the magnetosphere boundary from its mean position predicted by the Shue at al., 1997 (Sh97) model [7] are studied as a function of the substorm activity level (the AE-index value) and magnetic storm intensity (the value of the corrected D * st index). The results obtained make it possible to state that the amplitude of motion of the magnetospheric boundary on the dayside and in the low-latitude tail is small. It is likely that the position of the boundary is either independent of the AE and D * st indices or this dependence is weak. At the same time, the boundary of the high-latitude tail shifts inward on the average by 1.5R E with an increase of the AE-index in the case of absence of magnetic storms (contraction of the magnetospheric tail). On the contrary, in the presence of magnetic storms, this boundary shifts outward by up to 3R E with an increase of the AE-index (inflation of the magnetospheric tail). It is also shown that the boundary of the high-latitude tail moves outward with an increase of the D * st index, both at low substorm activity and in periods of high substorm activity. The amplitude of the outward motion of the high-latitude tail of the magnetosphere is by a factor of two higher for moderate magnetic storms with strong substorms than for moderate magnetic storms with weak substorms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safrankova, J. Nemecek, Z., et al., The Magnetopause Shape and Location: A Comparison of the INTERBALL-1 and GEOTAIL Observations with Models, Ann. Geophys., 2002, vol. 20, pp. 301–309.

    Article  ADS  Google Scholar 

  2. Nikolaeva, N.S., Zastenker, G.N., and Borodkova, N.L., Verification of the Accuracy of the Magnetopause Empirical Models Using the INTERBALL-1 Satellite Data, Kosm. Issled., 2002, vol. 40, no. 4, pp. 349–360.

    Google Scholar 

  3. Cahill, L.J. and Patel, V.L., The Boundary of Geomagnetic Field, August to November, 1961, Planet. Space Sci., 1967, vol. 15, p. 997.

    Article  ADS  Google Scholar 

  4. Petrinec, S.M. and Russell, C.T., External and Internal Influences on the Size of Dayside Terrestrial Magnetosphere, Geophys. Res. Lett., 1993, vol. 20, p. 339.

    ADS  Google Scholar 

  5. Meng, C.I., Variation of the Magnetopause Position with Substorm Activity, J. Geophys. Res., 1970, vol. 75, p. 3252.

    ADS  Google Scholar 

  6. Boardsen, S.A., Eastman, T.E., Sotirelis, T., and Green, J.L., An Empirical Model of the High-Latitude Magnetopause, J. Geophys. Res., 2000, vol. 105, p. 23193.

    Article  ADS  Google Scholar 

  7. Shue, J.-H., Chao, J.K., Fu, N.C., et al., A New Functional Form to Study the Solar Wind Control of the Magnetopause Shape and Size, J. Geophys. Res., 1997, vol. 102, p. 9497.

    Article  ADS  Google Scholar 

  8. Lepping, R.P., Acuna, M.H., and Burlaga, L.F., The WIND Magnetic Field Experiment, Space Sci. Rev., 1995, vol. 71, p. 207.

    Article  ADS  Google Scholar 

  9. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., et al., SWE a Comprehensive Plasma Instrument for the WIND Spacecraft, Space Sci. Rev., 1995, vol. 71, p. 41.

    Article  Google Scholar 

  10. Davis, T.N. and Sugiura, M., Auroral Electrojet Activity Index AE and Its Universal Time Variations, J. Geophys. Res., 1966, vol. 71, p. 785.

    ADS  Google Scholar 

  11. Sugiura, M., Hourly Values of Equatorial Dst for the IGY, in Annual International Geophysical Year, New York: Pergamon, 1964, vol. 35, p. 9.

    Google Scholar 

  12. Kertz, W., Ring Current Variations during the IGY, Ann. Intern. Geophys. Year, 1964, vol. 35, p. 49.

    Google Scholar 

  13. Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.C.L., et al., Solar-Wind Magnetosphere Coupling during Intense Magnetic Storms (1978–1979), J. Geophys. Res., 1989, vol. 94, p. 8835.

    Article  ADS  Google Scholar 

  14. Gonzalez, W.G., Joselyn, J.A., Kamide, Y., et al., What Is a Geomagnetic Storm, J. Geophys. Res., 1994, vol. 99, p. 5771.

    Article  ADS  Google Scholar 

  15. Echer, E. and Gonzalez, W., Geoeffectiveness of Interplanetary Shocks, Magnetic Clouds and Sector Boundary Crossings and Their Combined Occurrence, J. Geophys. Res., 2004, vol. 31, L09808, doi: 10.1029/2003GL019199.

  16. Alekseev, I.I., Belenkaya, E.S., Kalegaev, V.V., et al., Magnetic Storms and Magnetotail Currents, J. Geophys. Res., 1996, vol. 101, p. 7737.

    Article  ADS  Google Scholar 

  17. Ostapenko, A.A. and Maltsev, Y.P., Relation of the Magnetic Field in the Magnetosphere to the Geomagnetic and Solar Wind Activity, J. Geophys. Res., 1997, vol. 102, p. 17467.

    Article  ADS  Google Scholar 

  18. Chen, M., Lyons, L., and Schulz, M., Simulations of Phase Space Distributions of Storm Time Proton Ring Current, J. Geophys. Res., 1994, vol. 99, p. 5745.

    Article  ADS  Google Scholar 

  19. Nakai, H. and Kamide, Y., Solar Cycle Variations in the Storm-Substorm Relationship, J. Geophys. Res., 1999, vol. 104, p. 22695.

    Article  ADS  Google Scholar 

  20. Dremukhina, L.A., Feldstein, Y.I., Alexeev, I.I., et al., Structure of the Magnetic Field during Magnetic Storms, J. Geophys. Res., 1999, vol. 104, p. 28351.

    Article  ADS  Google Scholar 

  21. Lazutin, L.L., Structure of the Disturbed Magnetosphere, Kosm. Issled., 2004, vol. 42, no. 5, pp. 555–560.

    Google Scholar 

  22. Rostoker, G., Akasofu, S.-I., Foster, J., et al., Magnetospheric Substorms: Definition and Signatures, J. Geophys. Res., 1980, vol. 85, p. 1663.

    ADS  Google Scholar 

  23. Nakai, H., Kamide, Y., and Russell, C.T., Dependence of Near-Earth Magnetotail Magnetic Field in Storm and Substorm Activities, J. Geophys. Res., 1999, vol. 104, p. 22701.

    Article  ADS  Google Scholar 

  24. Akasofu, S.I., Relationship between the AE and Dst Indices during Geomagnetic Storms, J. Geophys. Res., 1981, vol. 86, p. 4820.

    ADS  Google Scholar 

  25. Lui, A.T.Y., Anger, C.D., and Akasofu, S.I., The Equatorward Boundary of the Diffuse Aurora and Auroral Substorms as Seen by the Isis2 Auroral Scanning Photometer, J. Geophys. Res., 1975, vol. 80, p. 3603.

    ADS  Google Scholar 

  26. Maezawa, K., Magnetotail Boundary Motion Associated with Geomagnetic Substorms, J. Geophys. Res., 1975, vol. 80, p. 3543.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Nikolaeva, Yu.I. Yermolaev, N.L. Borodkova, V.A. Parkhomov, 2006, published in Kosmicheskie Issledovaniya, 2006, Vol. 44, No. 5, pp. 403–410.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaeva, N.S., Yermolaev, Y.I., Borodkova, N.L. et al. Variations of the magnetopause position versus the level of geomagnetic activity (according to data of the INTERBALL-1 Satellite for 1995–1997). Cosmic Res 44, 385–392 (2006). https://doi.org/10.1134/S0010952506050017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952506050017

PACS numbers

Navigation