Skip to main content
Log in

Results of measurements with the Planetary Fourier Spectrometer onboard Mars Express: Clouds and dust at the end of southern summer. A comparison with OMEGA images

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

We discuss the results of measurements made with the Planetary Fourier Spectrometer (PFS) onboard the Mars Express spacecraft. The data were obtained in the beginning of the mission and correspond to the end of summer in the southern hemisphere of Mars (L s ∼ 340°). Three orbits are considered, two of which passed through volcanoes Olympus and Ascraeus Mons (the height above the surface is about +20 km), while the third orbit intersects lowland Hellas (−7 km). The influence of the relief on the properties of the aerosol observed is demonstrated: clouds of water ice with a visual optical thickness of 0.1–0.5 were observed above volcanoes, while only dust was found during the observations (close in time) along the orbit passing through Hellas in low and middle latitudes. This dust is homogeneously mixed with gas and has a reduced optical thickness of 0.25±0.05 (at v = 1100 cm−1). In addition to orographic clouds, ice clouds were observed in this season in the northern polar region. The clouds seen in the images obtained simultaneously by the mapping spectrometer OMEGA confirm the PFS results. Temperature inversion is discovered in the north polar hood below the level 1 mbar with a temperature maximum at about 0.6 mbar. This inversion is associated with descending movements in the Hadley cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, J.L., Bonev, B.P., James, P.B., et al., The Seasonal Behavior of Water Ice Clouds in the Tharsis and Valles Marineris Regions of Mars: Mars Orbiter Camera Observations, Icarus, 2003, vol. 165, pp. 34–52.

    Article  ADS  Google Scholar 

  2. Smith, M.D., Bandfield, J.L., Christensen, P.R., and Richardson, M.I., Thermal Emission Imaging System (THEMIS) Infrared Observations of Atmospheric Dust and Water Ice Cloud Optical Depth, J. Geophys. Res., 2003, vol. 108, no. E11, p. 5115.

    Article  Google Scholar 

  3. Clancy, R.T. and Wolff, M.J., Mars Aerosol Studies with the MGS TES Emission Phase Function Observations: Optical Depths, Particle Sizes, and Ice Cloud Types versus Latitude and Solar Longitude, J. Geophys. Res., 2003, vol. 108, no. E9, p. 5098.

    Article  Google Scholar 

  4. Wolff, M.J. and Clancy, R.T., Constraints on the Size of Martian Aerosols from Thermal Emission Spectrometer Observations, J. Geophys. Res., 2003, vol. 108, no. E9, p. 5097.

    Article  Google Scholar 

  5. Pearl, J.C., Smith, M.D., Conrath, B.J., et al., Observations of Martian Ice Clouds by the Mars Global Surveyor Thermal Emission Spectrometer: the First Martian Year, J. Geophys. Res., 2001, vol. 106, pp. 12325–12338.

    Article  ADS  Google Scholar 

  6. Newman, G.A., Zuber, M.T., and Smith, D.E., Clouds Detected by the Mars Orbiter Laser Altimeter, Intern. Workshop: Mars Atmosphere Modeling and Observations, Granada, Spain, 2003, pp. 6–7.

  7. James, P.B., Bell, J.F., Clancy, R.T., et al., Global Imaging of Mars by Hubble Space Telescope during the 1995 Opposition, J. Geophys. Res., 1996, vol. 101, no. E8, pp. 18883–18890.

    Article  ADS  Google Scholar 

  8. Tamppari, L.K., Zurek, R.W., and Paige, D.A., Viking-Era Diurnal Water-Ice Clouds, J. Geophys. Res., 2003, vol. 108, no. E7, p. 5073.

    Article  Google Scholar 

  9. Formisano, V., Angrilli, F., Arnold, G., et al., The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express Mission, Planet. Space Sci., 2005, vol. 53, no. 10, pp. 963–974.

    Article  ADS  Google Scholar 

  10. Grassi, D., Ignatiev, N.I., Zasova, L.V., et al., Study and Development of Theoretical and Software Tools for the Analysis of Data from the Planetary Fourier Spectrometer on Board of the Mars Express Mission, Planet. Space Sci., 2005, vol. 53, no. 10, pp. 1017–1024.

    Article  ADS  Google Scholar 

  11. Zasova, L.V., Khatuntsev, I.V., Moroz, V.I., and Ignatiev, N.I., Structure of the Venus Middle Atmosphere: Venera-15 Fourier Spectrometer Data Revisited, Adv. Space Res., 1999, vol. 23, no. 9, pp. 1559–1568.

    Article  ADS  Google Scholar 

  12. Formisano, V., Grassi, D., Ignatiev, N., et al., IRIS Mariner 9 Data Revisited: Water and Dust Daily Cycle, Planet. Space Sci., 2001, vol. 49, pp. 977–992.

    Article  ADS  Google Scholar 

  13. Zasova, L., Grassi, D., Formisano, V., et al., The Martian Atmosphere in the Region of the Great Volcanoes: Mariner 9 IRIS Data Revisited, Planet. Space Sci., 2001, vol. 49, pp. 977–992.

    Article  ADS  Google Scholar 

  14. Zasova, L., Formisano, V., Grassi, D., et al., Martian Winter Atmosphere at North High Latitudes: Mariner 9 Iris Data Revisited, Adv. Space Res., 2002, vol. 29, no. 2, pp. 151–156.

    Article  ADS  Google Scholar 

  15. Zasova, L.V., Formisano, V., Grassi, D., et al., Thermal Structure of the Martian Atmosphere Retrieved from the IR Spectrometry in the 15 μm CO2 Band: Input to MIRA, Adv. Space Res., 2005, vol. 34, no. 8.

  16. Bandfield, J.L., Hamilton, V.E., and Christensen, P.R., A Global View of Martian Surface Compositions from MGS-TES, Science, 2000, vol. 287, no. 5458, pp. 1626–1630.

    Article  ADS  Google Scholar 

  17. Bandfield, J.F., Global Mineral Distributions on Mars, J. Geophys. Res., 2002, vol. 107, no. E6.

  18. Hansen, G.B., Spectral Absorption of Solid CO2 from the Ultraviolet to the Far-Infrared, Adv. Space Res., 1997, vol. 20, pp. 1613–1616.

    Article  ADS  Google Scholar 

  19. Hansen, G.B., Empirical Optical Properties of Martian Dust, 32nd Annual Lunar and Planetary Science Conf., Houston, Texas, 2001, March 12–16, abstract no. 1282.

  20. Warren, S.G., Optical Constants of Ice from the Ultraviolet to the Microwave, Appl. Opt., 1984, vol. 23, pp. 1206–1225.

    Article  ADS  Google Scholar 

  21. Toon, O.B., Pollack, J.B., and Sagan, C., Physical Properties of the Particles Composing the Martian Dust Storm of 1971–1972, Icarus, 1977, vol. 30, pp. 663–696.

    Article  ADS  Google Scholar 

  22. Korablev, O.I., Krasnopolsky, V.A., Rodin, A.V., and Chassefiere, E., Vertical Structure of Martian Dust Measured by the Solar Occultation from Phobos Spacecraft, Icarus, 1993, vol. 102, pp. 76–87.

    Article  ADS  Google Scholar 

  23. Clancy, R.T., Lee, S.W., Gladstone, G.R., et al., A New Model for Mars Atmospheric Dust Based upon Analysis of Ultraviolet through Infrared Observations from Mariner 9, Viking, and Phobos, J. Geophys. Res., 1995, vol. 100, no. E3, pp. 5251–5263.

    Article  ADS  Google Scholar 

  24. Ignatiev, N.I., Grassi, D., and Zasova, L.V., Planetary Fourier Spectrometer Data Analysis: Fast Radiative Transfer Models, Planet. Space Sci., 2004.

  25. Grassi, D., Fiorenza, C., Zasova, L.V., et al., The Martian Atmosphere above Great Volcanoes: Early Planetary Fourier Spectrometer Observations, Planet. Space Sci., 2004.

  26. Hinson, D.P. and Wilson, R.J., Temperature Inversions, Thermal Tides, and the Water Ice Clouds in the Martian Tropics, J. Geophys. Res., 2004, vol. 109, p. E01002.

    Article  Google Scholar 

  27. Bellucci, G., Formisano, V., and Capaccioni, F., An Imaging Spectrometer in the Visible near Infrared for the Study of Planetary Surfaces, Planet. Space Sci., 1998, vol. 46.

  28. Liu, J., Richardson, I., and Wilson, R.J., An Assessment of the Global, Seasonal, and Interannual Spacecraft Record of Martian Climate in the Thermal Infrared, J. Geophys. Res., 2004, vol. 108, no. E8, p. 5089.

    Article  Google Scholar 

  29. Magalhaes, J.A., Schofield, J.T., and Seiff, A., Results of the Mars Pathfinder Atmospheric Structure, J. Geophys. Res., 1999, vol. 104, pp. 8943–8956.

    Article  ADS  Google Scholar 

  30. Haberle, R.M., Joshi, M.M., Murphy, J.R., et al., General Circulation Model Simulations of the Mars Pathfinder Atmospheric Structure Investigation/Meteorology Data, J. Geophys. Res., 1999, vol. 104, pp. 8957–8974.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Zasova.

Additional information

Original Russian Text © L.V. Zasova, V. Formisano, V.I. Moroz, J.-P. Bibring, D. Grassi, N.I. Ignatiev, M. Giuranna, G. Bellucci, F. Altieri, M. Blecka, V.N. Gnedykh, A.V. Grigoriev, E. Lellouch, A. Mattana, A. Maturilli, B.E. Moshkin, Yu.V. Nikolsky, D.V. Patsaev, G. Piccioni, M. Ratai, B. Saggin, S. Fonti, I.V. Khatuntsev, H. Hirsh, A.P. Ekonomov, 2006, published in Kosmicheskie Issledovaniya, 2006, Vol. 44, No. 4, pp. 319–331.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zasova, L.V., Formisano, V., Moroz, V.I. et al. Results of measurements with the Planetary Fourier Spectrometer onboard Mars Express: Clouds and dust at the end of southern summer. A comparison with OMEGA images. Cosmic Res 44, 305–316 (2006). https://doi.org/10.1134/S0010952506040046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952506040046

PACS numbers

Navigation