Skip to main content
Log in

Detection of ultrahigh-energy cosmic rays and neutrinos by radio method using artificial lunar satellites

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

An estimate of the feasibility of the ultrahigh-energy cosmic ray and neutrino detection using a lunar satellite-borne radio receiver is presented. The data obtained in the proposed experiment will make resolving the current contradictions in the ultrahigh-energy cosmic ray spectra measured with the major ground-based instruments possible. Moreover, they will enable us to considerably extend the accessible energy range and to check predictions of various models of the origin of the highest-energy particles in the Universe. At the same time the lunar radio detector provides a means of searching for ultrahigh-energy neutrinos with a high sensitivity combined with a very large target effective mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharjee, P. and Sigl, G., Origin and Propagation of Extremely High Energy Cosmic Rays, Phys. Rep., 2000, vol. 327, p. 109 (astro-ph/9811011).

    Article  ADS  Google Scholar 

  2. Bertou, X., Baratov, M., and Letessier-Selvon, A., Physics of Extremely High Energy Cosmic Rays, Int. J. Mod. Phys. A, 2000, vol. 15, p. 2181 (astro-ph/0001516).

    Article  ADS  Google Scholar 

  3. Cronin, J., Gaisser, T., and Swordy, S., Cosmic Rays at the Energy Frontier, Scientific American, 1997, vol. 276, January, p. 44.

    Google Scholar 

  4. Zatsepin, G.T. and Kuz’min, V.A., On Upper Boundary of the Spectrum of Cosmic Rays, Pis’ma Zh. Eksp. Teor. Fiz., 1966, vol. 4, no. 3, p. 114.

    Google Scholar 

  5. Greisen, K., End of the Cosmic-Ray Spectrum, Phys. Rev. Lett., 1966, vol. 16, p. 748.

    Article  ADS  Google Scholar 

  6. The Pierre Auger Project Design Report, Fermilab, October, 1995.

  7. Takeda, M., Hayashida, N., Honda, K., et al., Extension of the Cosmic-Ray Energy Spectrum beyond the Predicted Greisen-Zatsepin-Kuz’min Cutoff, Phys. Rev. Lett., 1998, vol. 81, p. 1163 (astro-ph/9807193).

    Article  ADS  Google Scholar 

  8. Hayashida, N., Honda, K., Inoue, N., et al., Updated AGASA Event List above 4 × 1019 eV, Astrophys. J., 1999, vol. 522, p. 225 (astro-ph/0008102).

    ADS  Google Scholar 

  9. Abu-Zayyad, T., Archbold, G.C., Bellido, J.A., et al., Measurement of the Spectrum of the UHE Cosmic Rays by the FADC Detector of the HiRes Experiment, Astropart. Phys., 2005, vol. 23, p. 157 (astro-ph/0208301).

    ADS  Google Scholar 

  10. Blandford, R.D., Acceleration of Ultra High Energy Cosmic Rays, Phys. Scripta, 2000, vol. 85, p. 191 (astro-ph/9906026).

    Google Scholar 

  11. Kardashev, N.S., Cosmic Supercollider, Mon. Not. R. Astron. Soc., 1995, vol. 276, p. 515.

    ADS  Google Scholar 

  12. Farrar, G.R., Detecting Gluino-Containing Hadrons, Phys. Rev. Lett., 1996, vol. 76, p. 4111 (hep-ph/9603271).

    ADS  Google Scholar 

  13. Kephart, T.W. and Weiler, T.J., Magnetic Monopoles as the Highest Energy Cosmic Ray Primaries, Astropart. Phys., 1996, vol. 4, p. 271 (astro-ph/9505134).

    Article  ADS  Google Scholar 

  14. Wick, S., Kephart, T., Weiler, T., and Biermann, P., Signatures for a Cosmic Flux of Magnetic Monopoles, Astropart. Phys., 2003, vol. 18, p. 663 (astro-ph/0001233).

    Article  ADS  Google Scholar 

  15. Bhattacharjee, P. and Rana, N., Ultrahigh Energy Particle Flux from Cosmic Strings, Phys. Lett. B, 1990, vol. 246, p. 365.

    ADS  Google Scholar 

  16. Hill, C., Schramm, D., and Walker, T., Ultra-High Energy Cosmic Rays from Superconducting Cosmic Strings, Phys. Rev. D: Part. Fields, 1987, vol. 36, p. 1007.

    ADS  Google Scholar 

  17. Bhattacharjee, P. and Sigl, G., Monopole Annihilation and Highest Energy Cosmic Rays, Phys. Rev. D: Part. Fields, 1995, vol. 51, p. 4079 (astro-ph/9412053).

    ADS  Google Scholar 

  18. Berezinsky, V., Martin, X., and Vilenkin, A., High Energy Particles from Monopoles Connected by String, Phys. Rev. D: Part. Fields, 1997, vol. 56, p. 2024 (astro-ph/9703077).

    ADS  Google Scholar 

  19. Berezinsky, V. and Vilenkin, A., Cosmic Necklaces and Ultrahigh Energy Cosmic Rays, Phys. Rev. Lett., 1997, vol. 79, p. 5202 (astro-ph/9704257).

    ADS  Google Scholar 

  20. Masperi, L. and Silva, B., Cosmic Rays from Decaying Vortons, Astropart. Phys., 1998, vol. 8, p. 173 (astro-ph/9706299).

    Article  ADS  Google Scholar 

  21. Berezinsky, V., Blasi, P., and Vilenkin, A., Signatures of Topological Defects, astro-ph/9803271.

  22. Zeldovich, Ya.B. and Starobinsky, A.A., Rates of Particle Production in Gravitational Fields, Pis’ma Zh. Eksp. Teor. Fitz., 1977, vol. 26, no. 5, p. 373.

    ADS  Google Scholar 

  23. Berezinsky, V., Kachelriess, M., and Vilenkin, A., Ultra-High Energy Cosmic Rays without GZK Cutoff, Phys. Rev. Lett., 1997, vol. 79, p. 4302 (astro-ph/9708217).

    ADS  Google Scholar 

  24. Fargion, D., Mele, B., and Salis, A., Ultrahigh Energy Neutrino Scattering onto Relic Light Neutrinos in Galactic Halo as Possible Source of Highest Energy Extragalactic Cosmic Rays, Astrophys. J., 1999, vol. 517, p. 725 (astro-ph/10029).

    Article  ADS  Google Scholar 

  25. Weiler, T.J., Cosmic Ray Neutrino Annihilation on Relic Neutrinos Revisited: A Mechanism for Generating Air Showers above the Greisen-Zatsepin-Kuzmin Cutoff, Astropart. Phys., 1999, vol. 11, p. 303 (hep-ph/9710431).

    Article  ADS  Google Scholar 

  26. Berezinsky, V.S. and Zatsepin, G.T., Cosmic Rays at Ultra High Energies (Neutrino?), Phys. Lett. B, 1969, vol. 28, p. 423.

    ADS  Google Scholar 

  27. Arkani-Hamed, N., Dimopoulos, S., and Dvali, G., The Hierarchy Problem and New Dimensions at a Millimeter, Phys. Lett. B, 1998, vol. 429, p. 263 (hep-ph/9803315).

    ADS  Google Scholar 

  28. Randall, L. and Sundrum, R.A., Large Mass Hierarchy from a Small Extra Dimensions, Phys. Rev. Lett., 1999, vol. 83, p. 3370 (hep-ph/9905221).

    ADS  MathSciNet  Google Scholar 

  29. Feng, J.L. and Shapere, A.D., Black Hole Production by Cosmic Rays, Phys. Rev. Lett., 2002, vol. 88, p. 021303 (hep-ph/0109106).

    ADS  Google Scholar 

  30. Kirzhnits, D.A. and Chechin, V.A., Cosmic Rays and the Fundamental Length, Pis’ma Zh. Eksp. Teor. Fiz., 1971, vol. 11, p. 261.

    Google Scholar 

  31. Kirzhnits, D.A. and Chechin, V.A., Cosmic Rays of Super-High Energies and Possible Generalization of Relativity Theory, Yadern. Fiz., 1972, vol. 15, p. 1051.

    Google Scholar 

  32. Bogoslovskii, G.Yu., A Special Relativistic Theory of the Locally Anisotropic Space-Time, Nuovo Cimento B, 1977, vol. 40, p. 99.

    Google Scholar 

  33. Coleman, S. and Glashow, S.L., High Energy Tests of Lorentz Invariance, Phys. Rev. D: Part. Fields, 1999, vol. 59, p. 116008 (hep-ph/9812418).

    ADS  Google Scholar 

  34. Amelino-Camelia, G. and Piran, T., Planck-Scale Deformation of Lorentz Symmetry as a Solution to the UHECR and the TeV-γ Paradoxes, Phys. Rev. D: Part. Fields, 2001, vol. 64, p. 036005 (astro-ph/0008107).

    ADS  Google Scholar 

  35. Balkanov, V.A., Belolartikov, I.A., Bezrukov, L.B., et al., The Lake Baikal Neutrino Experiment: Selected Results, Yadern. Fiz., 2000, vol. 63, no. 6, p. 1027 (astro-ph/0001151).

    Google Scholar 

  36. Ahrens, J., Bai, X., Barouch, G., et al., Search for Point Sources of High Energy Neutrinos with AMANDA, Astrophys. J., 2003, vol. 583, p. 1040 (astro-ph-0208006).

    Article  ADS  Google Scholar 

  37. Ackermann, M., Ahrens, J., Bai, X., et al., Search for Extraterrestrial Point Sources of High Energy Neutrinos with AMANDA-II Using Data Collected in 2000–2002, Phys. Rev. D, 2005, vol. 71, p. 077102 (astro-ph/0412347).

    Article  ADS  Google Scholar 

  38. Grieder, P. (for the NESTOR Collaboration), NESTOR Neutrino Telescope Status Report, Proc. of 28th ICRC, Tsukuba, Japan, 2003, p. 1377.

  39. Montanet, F. (for the ANTARES Collaboration), Design and Expected Performance of ANTARES Neutrino Telescope, Nucl. Phys. B, Proc. Suppl., 2000, vol. 87, p. 436 (astro-ph/0001380).

    Article  ADS  Google Scholar 

  40. Ahrens, J., Bahcall, J.N., Bai, X., et al., Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos, Astropart. Phys., 2004, vol. 20, p. 507 (astro-ph/0305196).

    Article  ADS  Google Scholar 

  41. Blanco-Pillado, J.J., Vázquez, R.A., and Zas, E., High Energy Cosmic Rays from Neutrinos, Phys. Rev. D: Part. Fields, 2000, vol. 61, p. 123003 (hep-ph/9902266).

    ADS  Google Scholar 

  42. Yoshida, S., Sigl, G., and Lee, S., Extremely High Energy Neutrinos, Neutrino Hot Dark Matter, and the Highest Energy Cosmic Rays, Phys. Rev. Lett., 1998, vol. 81, p. 5505 (hep-ph/9808324).

    ADS  Google Scholar 

  43. Fodor, Z., Katz, S., and Ringwald, A., Relic Neutrino Masses and the Highest Energy Cosmic Rays, JHEP, 2002, vol. 0206, p. 046 (hep-ph/0203198).

    ADS  Google Scholar 

  44. Kalashev, O., Kuzmin, V., Semicoz, D., and Sigl, G., Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources, Phys. Rev. D: Part. Fields, 2002, vol. 65, p. 103003 (hep-ph/0112351).

    ADS  Google Scholar 

  45. Kalashev, O., Kuzmin, V., Semicoz, D., and Sigl, G., Ultra-High Energy Neutrino Fluxes and Their Constraints, Phys. Rev. D: Part. Fields, 2002, vol. 66, p. 063004 (hep-ph/0205050).

    ADS  Google Scholar 

  46. Protheroe, P.J. and Johnson, P.A., Propagation of Ultra High Energy Protons over Cosmological Distances and Implications for Topological Defect Models, Astropart. Phys., 1996, vol. 4, p. 253 (astro-ph/9506119).

    Article  ADS  Google Scholar 

  47. Yoshida, S., Dai, H., Jui, C., and Sommers, P., Extremely High Energy Neutrinos and Their Detection, Astrophys. J., 1997, vol. 479, p. 547 (hep-ph/9608186).

    Article  ADS  Google Scholar 

  48. Stanev, T., Engel, R., Muecke, A., Protheroe, R., and Rachen, J., Propagation of Ultra-High Energy Protons in the Nearby Universe, Phys. Rev. D: Part. Fields, 2000, vol. 62, p. 093005 (astro-ph/0003484).

    ADS  Google Scholar 

  49. Engel, R., Seckel, D., and Stanev, T., Neutrinos from Propagation of Ultra-High Energy Protons, Phys. Rev. D: Part. Fields, 2001, vol. 64, p. 093010 (astro-ph/0101216).

    ADS  Google Scholar 

  50. Fodor, Z., Katz, S., Ringwald, A., and Tu, H., Bounds on the Cosmogenic Neutrino Flux, JCAP, 2003, vol. 0311, p. 015 (hep-ph/030917).

    ADS  Google Scholar 

  51. Waxman, E. and Bahcall, J., High Energy Neutrinos from Astrophysical Sources: An Upper Bound, Phys. Rev. D: Part. Fields, 1999, vol. 59, p. 023002 (hep-ph/9807282).

    ADS  Google Scholar 

  52. Waxman, E. and Bahcall, J., High Energy Astrophysical Neutrino: The Upper Bound Is Robust, Phys. Rev. D: Part. Fields, 2001, vol. 64, p. 023002 (hep-ph/9902383).

    ADS  Google Scholar 

  53. Mannheim, K., Protheroe, R., and Rachen, J., On the Cosmic Ray Bound for Models of Extragalactic Neutrino Production, Phys. Rev. D: Part. Fields, 2001, vol. 63, p. 023003 (astro-ph/9812398).

    ADS  Google Scholar 

  54. Mannheim, K., Bounds on the Neutrino Flux from Cosmic Sources of Relativistic Particles, J. Phys. G, 2001, vol. 27, p. 1691 (astro-ph/0104165).

    Article  ADS  Google Scholar 

  55. Sreecumar, P., Bertsch, D., Dingus, B., et al., EGRET Observations on the Extragalactic Gamma Ray Emission, Astrophys. J., 1998, vol. 494, p. 523 (astro-ph/9709257).

    ADS  Google Scholar 

  56. Athar, H., Jezabek, M., and Yasuda, O., Effects of Neutrino Mixing on High-Energy Cosmic Neutrino Flux, Phys. Rev. D: Part. Fields, 2000, vol. 62, p. 103007 (hep-ph/005104).

    ADS  Google Scholar 

  57. Rachen, J. and Meszaros, P., Photohadronic Neutrino from Transients in Astrophysical Sources, Phys. Rev. D: Part. Fields, 1998, vol. 58, p. 123005 (hep-ph/9802280).

    ADS  Google Scholar 

  58. Waxman, E. and Bahcall, J., High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs, Phys. Rev. Lett., 1997, vol. 78, p. 2292 (astro-ph/9701231).

    Article  ADS  Google Scholar 

  59. Vietri, M., Ultra High Energy Neutrinos from Gamma Ray Bursts, Phys. Rev. Lett., 1998, vol. 80, p. 3690 (astro-ph/9802241).

    Article  ADS  Google Scholar 

  60. Vietri, M., De Marco, D., and Guetta, D., On the Generation of UHECRs in GRBs: A Reappraisal, Astrophys. J., 2003, vol. 592, p. 378 (astro-ph/0302144).

    Article  ADS  Google Scholar 

  61. Razzaque, S., Meszaros, P., and Waxman, E., High Energy Neutrinos from Gamma Ray Bursts with Precursor Supernovae, Phys. Rev. Lett., 2003, vol. 90, p. 241103 (astro-ph/0212536).

    Article  ADS  Google Scholar 

  62. Guetta, D., Hooper, D., Alvarez-Muñiz, J., Halzen, F., and Reuveni, E., Neutrinos from Individual Gamma-Ray Burst in the BATSE Catalog, Astropart. Phys., 2004, vol. 20, p. 429 (astro-ph/0302524).

    Article  ADS  Google Scholar 

  63. Alvarez-Muñiz, J., Halzen, F., and Hooper, D., High Energy Neutrinos from Gamma Ray Bursts: Event Rates in Neutrino Telescope, Phys. Rev. D: Part. Fields, 2000, vol. 62, p. 093015 (astro-ph/0006027).

    ADS  Google Scholar 

  64. Stecker, F., Done, S., Salomon, M., and Sommers, P., High-Energy Neutrinos from Active Galactic Nuclei, Phys. Rev. Lett., 1991, vol. 69, p. 2738.

    ADS  Google Scholar 

  65. Halzen, F. and Zas, E., Neutrino Fluxes from Active Galaxies: A Model-Independent Estimate, Astrophys. J., 1997, vol. 488, p. 669 (astro-ph/9702193).

    Article  ADS  Google Scholar 

  66. Mucke, A. and Protheroe, R., A Proton Synchrotron Blazer Model for Flaring in Markarian 501, Astropart. Phys., 2001, vol. 15, p. 121 (astro-ph/0004052).

    ADS  Google Scholar 

  67. Atoyan, A. and Dermer, C.D., High Energy Neutrinos from Photomeson Processes in Blazar, Phys. Rev. Lett., 2001, vol. 87, p. 221102 (astro-ph/0108053).

    Article  ADS  Google Scholar 

  68. Neronov, A. and Semikoz, D., Which Blazars Are Neutrino Loud?, Phys. Rev. D: Part. Fields, 2002, vol. 66, p. 123003 (astro-ph/0208248).

    ADS  Google Scholar 

  69. Bhattacharjee, P., Hill, C., and Schramm, D., Grand Unified Theories, Topological Defects and Ultrahigh-Energy Cosmic Rays, Phys. Rev. Lett., 1992, vol. 69, p. 567.

    ADS  Google Scholar 

  70. Birkel, M. and Sarkar, S., Extremely High Energy Cosmic Rays from Relic Particle Decays, Astropart. Phys., 1998, vol. 9, p. 297 (hep-ph/9804285).

    Article  ADS  Google Scholar 

  71. Berezinsky, V. and Kachelriess, M., Limiting SUSYQCD Spectrum and Its Application for Decays of Superheavy Particles, Phys. Lett. B, 1998, vol. 434, p. 61 (hep-ph/9803500).

    ADS  Google Scholar 

  72. Sigl, G., Lee, S., Bhattacharjee, P., and Yoshida, S., Probing Grand Unified Theories with Cosmic Rays, Gamma-Ray and Neutrino Astrophysics, Phys. Rev. D: Part. Fields, 1999, vol. 59, p. 043504 (hep-ph/9809242).

    ADS  Google Scholar 

  73. Barbot, C., Drees, M., Halzen, F., and Hooper, D., Neutrinos Associated with Cosmic Ray of Top-Down Origin, Phys. Lett. B, 2003, vol. 555, p. 22 (hep-ph/0205230).

    ADS  Google Scholar 

  74. Sasaki, M., Asaoka, Y., Jobashi, M., et al., Detecting Very High Energy Neutrinos by the Telescope Array, Astropart. Phys., 2003, vol. 19, p. 37 (astro-ph/0204167).

    Article  ADS  Google Scholar 

  75. Argiro, S. (for the Pierre Auger Collaboration), Performance of the Pierre Auger Fluorescence Detector and Analysis of Well Reconstructed Events, Proc. of 28th ICRC, Tsukuba, Japan, 2003, p. 457 (astro-ph/0308427).

  76. Teshima, M., Lipari, P., and Santangelo, A., EUSO—Scientific Objectives, Proc. of 28th ICRC, Tsukuba, Japan, 2003, p. 1069.

  77. Krizmanic, J., et al., Simulated Performance of the Orbiting Wide-Angle Light Collectors (OWL) Experiment, Proc. of 27th ICRC, Hamburg: Germany, 7–15 August, 2001, p. 861.

  78. Khrenov, B.A., Design and Development of Space Experiments KLYPVE and TUS for Study of UHECR, Proc. of the First International Conference on Particle and Fundamental Physics in Space (“Space Part”), La Biodola, Isola d’Elba, Italy, 2002.

    Google Scholar 

  79. Markov M.A. On High-Energy Neutrino Physics, Proc. 10 th Int. Conf. on High-Energy Physics, Rochester, 1960, pp. 579–581.

  80. Askar’yan, G.A., Excess Negative Charge of Electron-Photon Shower and Coherent Radio Emission Generated by It, Zh. Eksp. Teor. Fiz., 1961, vol. 41, p. 616.

    Google Scholar 

  81. Askar’yan, G.A., Coherent Radio Emission Generated by Cosmic Rays in Air and Dense Media, Zh. Eksp. Teor. Fiz., 1965, vol. 48, p. 988.

    Google Scholar 

  82. Tsarev, V.A., Detection of Cosmic Rays of Ultra High Energies by a Radio Method, Fizika Elementarnykh Chastits i Atomnogo Yadra, 2004, vol. 35, no. 1, p. 1.

    Google Scholar 

  83. Tsarev, V.A. and Chechin, V.A., Detection of Cosmic Rays of Ultra High Energies by Radio Method from Satellites, Dokl. Akad. Nauk, 2002, vol. 383, no. 2, p. 486.

    Google Scholar 

  84. Gorham, P., Saltzberg, D., Schoessow, P., et al., Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection, Phys. Rev. E, 2000, vol. 62, p. 8590 (hep-ex/0004007).

    Article  ADS  Google Scholar 

  85. Saltzberg, D., Gorham, P., Walz, D., et al., Observation of the Askarian Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades, Phys. Rev. Lett., 2001, vol. 86, p. 2802 (hep-ex/0011001).

    Article  ADS  Google Scholar 

  86. Tsarev, V.A., Cherenkov Radiation in Radio Wave Band and the Problems of Ultrahigh-Energy Cosmic Ray and Neutrino Detection, Mezhdunarodnaya konferentsiya “P.A. Cherenkov i sovremennaya fizika” (Intern. Conf. “P.A. Cherenkov and Modern Physics”), Moscow, June 22–24, 2004.

  87. Tsarev, V.A. and Chechin, V.A., Radio Signal from Extensive Air Showers of Ultra High Energies, Kratkie Soobshch. po Fizike FIAN, 2001, no. 4, p. 42.

  88. Tsarev, V.A. and Chechin, V.A., Determination of the Cascade Curve Shape by Radio Method, Dokl. Akad. Nauk, 2002, vol. 389, p. 45.

    Google Scholar 

  89. Kotel’nikov, K.A., Polukhina, N.G., Feinberg, E.L., et al., Possible Detection of Cosmic Rays of Ultra High Energies by Radio Method from Satellites and Balloons, Izv. RAN, Ser. Fiz., 2002, vol. 66, no. 11, p. 1638.

    Google Scholar 

  90. Tsarev, V.A., Detection of Radio Signals Generated by Extensive Air Showers of Ultra High Energies Using Ground-Based, Balloon-Borne, and Satellite Receivers, Kratkie Soobshch. po Fizike FIAN, 2001, no. 11, p. 26.

  91. Tsarev, V.A. and Chechin, V.A., Detection of Radio Emission Generated by Extensive Air Showers and Reflected from the Earth’s Surface, Kratkie Soobshch. po Fizike FIAN, 2002, no. 11, p. 13.

  92. Tsarev, V.A. and Chechin, V.A., Radio Emission of Extensive Air Showers: Contribution of Transverse Current and Effect of Inhomogeneous Atmosphere, Kratkie Soobshch. po Fizike FIAN, 2002, no. 11, p. 26.

  93. Dagkesamanskii, R.D. and Zheleznykh, I.M., Radio Astronomy Method of Detecting Neutrinos and Other Elementary Particles of Super-High Energy, Pis’ma Zh. Eksp. Teor. Fiz., vol. 50, no. 5, p. 233.

  94. Filonenko, A.D., Detection of Cosmic Rays Using Radio Emission of a Shower and Potentialities of This Method in the Range of Super-High Energies, Usp. Fiz. Nauk, 2002, vol. 172, no. 4, p. 439.

    Google Scholar 

  95. Dagkesamanskii, R.D., Monitoring of Cherenkov Emission Pulses with Kalyazin Radiotelescope: Real Sensitivity and Prospective Program, AIP Conf. Proc. RADHEP 2000, 2000, vol. 579, p. 189.

    ADS  Google Scholar 

  96. Gorham, P., Liewer, K., Naudet, C., et al., Radio Limit on an Isotropic Flux of 100 EeV Cosmic Neutrinos, AIP Conf. Proc. RADHEP 2000, 2000, vol. 579, p. 177.

    ADS  Google Scholar 

  97. Gorham, P., Hebert, C., Liewer, K., et al., Experimental Limit on the Cosmic Diffuse Ultra-High Energy Neutrino Flux, Phys. Rev. Lett., 2004, vol. 93, p. 041101 (astro-ph/0310232).

    Article  ADS  Google Scholar 

  98. Lehtinen, N.G., Gorham, P.W., Jacobson, A.R., and Roussel-Dupre, R.A., FORTE Satellite Constraints on Ultra-High Energy Cosmic Particle Fluxes, Phys. Rev. D: Part. Fields, 2004, vol. 69, p. 013008 (astro-ph/0309656).

    ADS  Google Scholar 

  99. Zas, E., Halsen, F., and Stanev, T., Electromagnetic Pulses from High-Energy Showers: Implication for Neutrino Detection, Phys. Rev. D: Part. Fields, 1992, vol. 45, p. 362.

    ADS  Google Scholar 

  100. Alvarez-Muñiz, J., Vázquez, R., and Zas, E., Calculation Methods for Radio Pulses from High Energy Showers, Phys. Rev. D: Part. Fields, 2000, vol. 62, p. 063001 (astro-ph/0003315).

    ADS  Google Scholar 

  101. Alvarez-Muñiz, J. and Zas, E., Prospects for Radio Detection of Extremely High Energy Cosmic Rays and Neutrinos in the Moon, AIP Conf. Proc., 2001, vol. 579, p. 128 (astro-ph/0102173).

    ADS  Google Scholar 

  102. Alvarez-Muñiz, J. and Zas, E., Cherenkov Radio Pulses from EeV Neutrino Interactions: the LPM Effect, Phys. Lett. B, 1997, vol. 411, p. 218 (astro-ph/9706064).

    ADS  Google Scholar 

  103. Alvarez-Muñiz, J. and Zas, E., The LPM Effect for EeV Hadronic Showers in Ice: Implications for Radio Detection of Neutrinos, Phys. Lett. B, 1998, vol. 434, p. 396 (astro-ph/9806098).

    ADS  Google Scholar 

  104. Alvarez-Muñiz, J., Vázquez, R., and Zas, E., Characterization of Neutrino Signals with Radiopulses in Dense Media through the LPM Effect, Phys. Rev. D: Part. Fields, 2000, vol. 61, p. 023001 (astro-ph/9901278).

    ADS  Google Scholar 

  105. Alvarez-Muñiz, J., Vázquez, R.A., and Zas, E., Radio Pulses Generated by Showers in Different Dense Media, Proc. of 28th ICRC, Tsukuba, Japan, 2003, p. 1521.

  106. Landau, L.D. and Pomeranchuk, I.Ya., Electron Cascading Processes at Super-High Energies, Dokl. Akad. Nauk, 1953, vol. 92, p. 735.

    Google Scholar 

  107. Migdal, A.B., Bremsstrahlung and Pair Production in Condensed Media at High Energies, Phys. Rev., 1956, vol. 103, p. 1811.

    Article  ADS  MATH  Google Scholar 

  108. Gandhi, R., Quigg, C., Reno, M.H., and Sarcevic, I., Ultrahigh-Energy Neutrino Interactions, Astropart. Phys., 1996, vol. 5, p. 81 (hep-ph/9512364).

    Article  ADS  Google Scholar 

  109. Gandhi, R., Quigg, C., Reno, M.H., and Sarcevic, I., Neutrino Interactions at Ultrahigh Energies, Phys. Rev. D: Part. Fields, 1998, vol. 58, p. 093009 (hep-ph/9807264).

    ADS  Google Scholar 

  110. Kwiecinski, J., Martin, A.D., and Stasto, A.M., Penetration of the Earth by Ultrahigh Energy Neutrinos Predicted by Low x QCD, Phys. Rev. D: Part. Fields, 1999, vol. 59, p. 093002 (astro-ph/9812262).

    ADS  Google Scholar 

  111. Kwiecinski, J., Martin, A.D., and Stasto, A.M., Ultrahigh Energy Neutrino Physics, Acta Phys. Polon. B, 2000, vol. 31, p. 1273 (hep-ph/0004109).

    ADS  Google Scholar 

  112. Miocinovic, P., Barwick, S., Beatty, J., et al., Tuning into UHE Neutrinos in Antarctica: The ANITA Experiment, 22nd Texas Symposium on Relativistic Astrophysics at Stanford, Palo Alto, December 13–17, 2004.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Gusev, B.N. Lomonosov, K.M. Pichkhadze, N.G. Polukhina, V.A. Ryabov, T. Saito, V.K. Sysoev, E.L. Feinberg, V.A. Tsarev, V.A. Chechin, 2006, published in Kosmicheskie Issledovaniya, 2006, Vol. 44, No. 1, pp. 22–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, G.A., Lomonosov, B.N., Pichkhadze, K.M. et al. Detection of ultrahigh-energy cosmic rays and neutrinos by radio method using artificial lunar satellites. Cosmic Res 44, 19–38 (2006). https://doi.org/10.1134/S0010952506010035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952506010035

PACS numbers

Navigation