Skip to main content
Log in

Generation of Defects during Shock Compression of Aluminum

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Measurements of the electrical resistance of shock-compressed aluminum are used in the present study to estimate the concentration of point defects generated by the shock wave front. The parameters of the physical state of a thin metal sample are found by means of modeling the shock wave processes in the measurement cell. Experimental values of the specific electrical resistance of aluminum are compared with predictions of the equilibrium electrical resistance model. The proposed model ensures an adequate description of currently available reference data on equilibrium isothermal compression and isobaric heating of aluminum. At the same time, the shock wave experiment yields a higher specific electrical resistance than that predicted by the model of the electrical resistance of an equilibrium defectless crystal. The detected difference in the specific electrical resistances testifies to generation of defects of the crystal structure of the metal subjected to dynamic compression. Under the assumption of predominant formation of vacancies, the concentration of defects in aluminum is estimated as a function of the shock wave pressure. The number of defects in the metal increases with an increase in the shock wave pressure. The data obtained are qualitatively consistent with available results for copper and silver, which allows one to claim that generation of defects under shock compression has common specific features for these metals. The physical state of shock-compressed aluminum is thermodynamically nonequilibrium and includes numerous defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. L. V. Altshuler, “Application of Shock Waves in High-Pressure Physics," Usp. Fiz. Nauk 85 (2), 197–258 (1965).

    Google Scholar 

  2. V. E. Fortov, “Dynamic Methods in Plasma Physics," Usp. Fiz. Nauk 138, 361–412 (1982).

    Article  ADS  Google Scholar 

  3. E. N. Avrorin, B. K. Vodolaga, V. A. Simonenko, and V. E. Fortov, “Powerful Shock Waves and Extreme States of Matter," Usp. Fiz. Nauk 163 (5), 1–34 (1993).

    Article  Google Scholar 

  4. V. E. Fortov, L. V. Altshuler, R. F. Trunin, and A. I. Funtikov, Shock Waves and Extreme States of Matter (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  5. V. E. Fortov, Extreme States of Matter High Energy Density Physics (Springer, 2016). (Springer Series in Materials Science.)

  6. R. W. Cahn and P. Haasen, Physical Metallurgy (North Holland, 1996).

  7. H. Kressel and N. Brown, “Lattice Defects in Shock-Deformed and Cold-Worked Nickel," J. Appl. Phys. 38 (4), 1618 (1967); DOI: 10.1063/1.1709733.

    Article  ADS  Google Scholar 

  8. M. A. Mogilevskii, “Change in the Structure of Pure Copper under Explosive Loading," Fiz. Goreniya Vzryva 6 (2), 224–229 (1970).

    Article  Google Scholar 

  9. S. D. Gilev, “Electrical Resistance of Copper at High Pressures and Temperatures: Equilibrium Model and Generation of Defects of the Crystal Structure under Shock Compression," Fiz. Goreniya Vzryva 55 (5), 116–125 (2019) [Combust., Expl., Shock Waves 55 (5), 620–628 (2019); DOI: 10.1134/S0010508219050149].

    Article  Google Scholar 

  10. S. D. Gilev, “Nonequilibrium Physical State of Copper under Shock Compression," Fiz. Goreniya Vzryva 57 (3), 135–142 (2021) [Combust., Expl., Shock Waves 57 (3), 378–384 (2021); DOI: 10.1134/S001050822103014X].

    Article  Google Scholar 

  11. S. D. Gilev, “Electrical resistance of Aluminum under Shock Compression: Experimental Data," Fiz. Goreniya Vzryva 59 (1), 129–136 (2023) [Combust., Expl., Shock Waves 59 (1), 118–124 (2023); DOI: 10.1134/S0010508223010148].

    Article  Google Scholar 

  12. V. V. Rudenko, M. V. Shaburov, “User Software MAG for Personal Computers as a Tool for Numerical Simulation of One-Dimensional Magneto-Hydrodynamic Flows," in Proc. 10th Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, (Berlin, 2004), Ed. by M. von Ortenberg (Humboldt Univ., Berlin, 2005), pp. 321–324.

  13. S. D. Gilev, “Few-Parameter Equation of State for Aluminum," Teplofiz. Vys. Temp. 58 (2), 179–187 (2020).

    Google Scholar 

  14. S. D. Gilev, “Isotherm of Aluminum Based on the Generalized Equation for the Grüneisen Coefficient," Fiz. Goreniya Vzryva 58 (2), 109–117 (2022) [Combust., Expl., Shock Waves 58 (2), 226–233 (2022); 10.1134/S0010508222020125].

    Article  Google Scholar 

  15. E. Yu. Tonkov, Phase Diagrams of Elements at High Pressures (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  16. J. Ziman, Electrons and Phonons (Oxford, 1960).

  17. S. D. Gilev, “Few-Parameter Equation of State of Copper," Fiz. Goreniya Vzryva 54 (4), 107–122 (2018) [Combust., Expl., Shock Waves 54 (4), 482–495 (2018); DOI: 10.1134/S0010508218040123].

    Article  Google Scholar 

  18. P. W. Bridgman, “The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm2," Proc. of the Am. Acad. Arts Sci. 81 (4), 165–251 (1952); DOI: 10.2307/20023677.

    Article  Google Scholar 

  19. F. P. Bundy and H. M. Strong, “Behavior of Metals at High Temperatures and Pressures," Solid State Phys. 13, 81–146 (1962); DOI: 10.1016/S0081-1947(08)60456-7.

  20. K. Syassen and W. B. Holzapfel, “Isothermal Compression of Al and Ag to 120 kbar," J. Appl. Phys. 49 (8), 4427–4430 (1978); DOI: 10.1063/1.325497.

    Article  ADS  Google Scholar 

  21. L. C. Ming, D. Xiong, and M. H. Manghnani, “Isothermal Compression of Au and Al to 20 GPa," Physica B + C," 139–140, 174–176 (1986); DOI: 10.1016/0378-4363(86)90551-6.

    Article  ADS  Google Scholar 

  22. A. Dewaele, P. Loubeyre, and M. Mezouar, “Equations of State of Six Metals above 94 GPa," Phys. Rev. B 70 (9), 094112 (2004); DOI: 10.1103/PhysRevB.70.094112.

    Article  ADS  Google Scholar 

  23. Y. Akahama et al., “Evidence of a fcc–hcp Transition in Aluminum at Multimegabar Pressure," Phys. Rev. Lett. 96 (4), 045505 (2006); DOI: 10.1103/PhysRevLett.96.045505.

    Article  ADS  Google Scholar 

  24. I. V. Lomonosov, “Multi-Phase Equation of State for Aluminum," Laser Particle Beams 25 (4), 567–584 (2007); DOI: 10.1017/S0263034607000687.

    Article  ADS  Google Scholar 

  25. P. D. Desai, H. M. James, and C. Y. Ho, “Electrical Resistivity of Aluminum and Manganese," J. Phys. Chem. Ref. Data. 13, 1131–1172 (1984) DOI: 10.1063/1.555725.

    Article  ADS  Google Scholar 

  26. A. I. Goncharov and V. N. Rodionov, “Electrical Resistance of Copper and Aluminum under Shock Wave Compression," in Lavrent’ev’s Readings in Mathematics, Mechanics, and Physics, Abstracts of II All-Union Conf., Kiev, 1985, pp. 72–73.

  27. A. Damask and G. Dienes, Point Defects in Metals (New York, 1963).

  28. V. A. Volkov, “Electrical Resistance of Metals with Vacancies," Fiz. Met. Metalloved. 50 (5), 1094–1097 (1980).

    Google Scholar 

  29. Y. Kraftmakher, Lecture Notes on Equilibrium Point Defects and Thermophysical Properties of Metals (Word Sci., Singapore: 2000).

    Book  Google Scholar 

  30. J. J. Dick and D. L. Styris, “Electrical Resistivity of Silver Foils under Uniaxial Shock-Wave Compression," J. Appl. Phys. 46 (4), 1602–1617 (1975); DOI: 10.1063/1.321762.

    Article  ADS  Google Scholar 

  31. A. N. Orlov and Yu. V. Trushin, Energies of Point Defects in Metals (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 6, pp. 136-146. https://doi.org/10.15372/FGV20230616.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, S.D. Generation of Defects during Shock Compression of Aluminum. Combust Explos Shock Waves 59, 795–804 (2023). https://doi.org/10.1134/S0010508223060163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223060163

Keywords

Navigation