Skip to main content
Log in

Combustion Performance of a Bi2O3/Al/1Me-3N Mixture Depending on Its Prescription Configuration

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes a study of combustion performance of a Bi2O3/Al nanothermite mixture with the addition of 1-methyl-3-nitro-1,2,4-triazole (1Me-3N) depending on the content of the latter and the component ratio of a base Bi2O3/Al nanothermite pair. Adding 1Me-3N to the mixture increases the explosive force, but the latter begins to decrease as soon as the additive content reaches over a certain limit. Depending on the prescription configuration, it is possible to increase the explosive force by 22–29% relative to Bi2O3/Al nanothermite. Changing the prescription configuration makes it possible to vary the burning rate of Bi2O3/Al/1Me-3N within a range of 400–690 m/s in charges 2 mm in diameter and within a range of 120–430 m/s in a 0.1-mm thick layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. S. F. Son, B. W. Asay, T. J. Foley, et al., “Combustion of Nanoscale Al/MoO3 Thermite in Microchannels," J. Propul. Power. 23 (4), 715–721 (2007); DOI: 10.2514/1.26090.

    Article  Google Scholar 

  2. D. Zhang, X. Li, B. Qin, et al., “Electrophoretic Deposition and Characterization of Nano-Al/Fe2O3 Thermites," Mater. Lett. 120, 224–227 (2014); DOI: 10.1016/j.matlet.2014.01.113.

    Article  Google Scholar 

  3. K. T. Sullivan, J. D. Kuntz, and A. E. Gash, “Electrophoretic Deposition and Mechanistic Studies of Nano-Al/CuO Thermites," J. Appl. Phys. 112 (2), 024316 (2012); DOI: 10.1063/1.4737464.

    Article  ADS  Google Scholar 

  4. Y.-C. Chiang and M.-H. Wu, “Assembly and Reaction Characterization of a Novel Thermite Consisting Aluminum Nanoparticles and CuO Nanowires,: Proc. Combust. Inst. 36 (3), 4201–4208 (2017); DOI: 10.1016/j.proci.2016.06.176.

    Article  Google Scholar 

  5. V. E. Sanders, B. W. Asay, T. J. Foley, et al., “Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3)," J. Propul. Power. 23 (4), 707–714 (2007); DOI: 10.2514/1.26089.

    Article  Google Scholar 

  6. M. L. Pantoya and J. J. Granier, “Combustion Behavior of Highly Energetic Thermites: Nano Versus Micron Composites," Propell., Explos., Pyrotech. 30 (1), 53–62 (2005); DOI: 10.1002/prep.200400085.

    Article  Google Scholar 

  7. S. Subramaniam, S. Hasan, S. Bhattacharya, et al., “Self-Assembled Nanoenergetic Composite," Mater. Res. Soc. Symp. Proc. 896, 0896-H01-05.1 (2006); DOI: 10.1557/PROC-0896-H01-05.

  8. A. S. Rogachev and A. S. Mukasyan, “Combustion of Heterogeneous Nanostructural Systems (Review)," Fiz. Goreniya Vzryva 46 (3), 3–30 (2010) [Combust., Expl., Shock Waves 46 (3), 243–266 (2010); DOI: https://doi.org/10.1007/s10573-010-0036-2].

    Article  Google Scholar 

  9. C. Weir, M. L. Pantoya, and M. A. Daniels, “The Role of Aluminum Particle Size in Electrostatic Ignition Sensitivity of Composite Energetic Materials," Combust. Flame 160 (10), 2279–2281 (2013); DOI: 10.1016/j.combustflame.2013.05.005.

    Article  Google Scholar 

  10. D. G. Piercey and T. M. Klapötke, “Nanoscale Aluminum–Metal Oxide (Thermite) Reactions for Application in Energetic Materials," Centr. Eur. J. Energ. Mater. 7 (2), 115–129 (2010).

    Google Scholar 

  11. D. G. Kelly, P. Beland, P. Brousseau, and C.-F. Petre, “Formation of Additive-Containing Nanothermites and Modifications to Their Friction Sensitivity," J. Energ. Mater. 35 (3), 331–345 (2017); DOI: 10.1080/07370652.2016.1193072.

    Article  ADS  Google Scholar 

  12. X. Zhou, R. Shen, Y. Ye, et al., “Influence of Al/CuO Reactive Multilayer Films Additives on Exploding Foil Initiator," J. Appl. Phys. 110 (9), 094505 (2011); DOI: 10.1063/1.3658617.

    Article  ADS  Google Scholar 

  13. P. Zhu, R. Shen, Y. Ye, et al., “Energetic Igniters Realized by Integrating Al/CuO Reactive Multilayer Films with Cr Films," J. Appl. Phys. 110 (7), 074513 (2011); DOI: 10.1063/1.3646489.

    Article  ADS  Google Scholar 

  14. C. Ru, F. Wang, J. Xu, et al., “Superior Performance of a MEMS-Based Solid Propellant Microthruster (SPM) Array with Nanothermites," Microsyst. Technol. 23 (8), 3161–3174 (2017); DOI: 10.1007/s00542-016-3159-x.

    Article  Google Scholar 

  15. C. S. Staley, K. E. Raymond, R. Thiruvengadathan, et al., “Fast-Impulse Nanothermite Solid-Propellant Miniaturized Thrusters," J. Propul. Power. 29 (6), 1400–1409 (2013); DOI: 10.2514/1.B34962.

    Article  Google Scholar 

  16. S. J. Apperson, A. V. Bezmelnitsyn, R. Thiruvengadathan, et al., “Characterization of Nanothermite Material for Solid-Fuel Microthruster Applications," J. Propul. Power. 25 (5), 1086–1091 (2009); DOI: 10.2514/1.43206.

    Article  Google Scholar 

  17. R. Steelman, B. Clark, M. L.‘Pantoya, et al., “Desensitizing Nano Powders to Electrostatic Discharge Ignition," J. Electrostatics 76, 102–107 (2015); DOI: 10.1016/j.elstat.2015.05.008.

    Article  Google Scholar 

  18. N. Yan, L. Qin, H. Hao, et al., “Iron Oxide/Aluminum/Graphene Energetic Nanocomposites Synthesized by Atomic Layer Deposition: Enhanced Energy Release and Reduced Electrostatic Ignition Hazard," Appl. Surf. Sci. 408, 51–59 (2017); DOI: 10.1016/j.apsusc.2017.02.169.

    Article  ADS  Google Scholar 

  19. R. Thiruvengadathan, C. Staley, J. M. Geeson, et al., “Enhanced Combustion Characteristics of Bismuth Trioxide–Aluminum Nanocomposites Prepared through Graphene Oxide Directed Self-Assembly," Propell., Explos., Pyrotech. 40 (5), 729–734 (2015); DOI: 10.1002/prep.201400238.

    Article  Google Scholar 

  20. A. Bach, P. Gibot, L. Vidal, et al., “Modulation of the Reactivity of a WO3/Al Energetic Material with Graphitized Carbon Black As Additive," J. Energ. Mater. 33 (4), 260–276 (2015); DOI: 10.1080/07370652.2014.977979.

    Article  ADS  Google Scholar 

  21. B. Siegert, M. Comet, O. Muller, et al., “Reduced-Sensitivity Nanothermites Containing Manganese Oxide Filled Carbon Nanofibers," J. Phys. Chem. C 114 (46), 19562–19568 (2010); DOI: 10.1021/jp1014737.

    Article  Google Scholar 

  22. R. Thiruvengadathan, S. W. Chung, S. Basuray, et al., “A Versatile Self-Assembly Approach toward High Performance Nanoenergetic Composite Using Functionalized Graphene," Langmuir 30 (22), 6556–6564 (2014); DOI: 10.1021/la500573e.

    Article  Google Scholar 

  23. P. Gibot, A. Bach, L. Vidal, et al., “Safer and Performing Energetic Materials Based on Polyaniline-Doped Nanocomposites," J. Energ. Mater. 35 (2), 136–147 (2017); DOI: 10.1080/07370652.2016.1210697.

    Article  ADS  Google Scholar 

  24. T. Foley, A. Pacheco, J. Malchi, et al., “Development of Nanothermite Composites with Variable Electrostatic Discharge Ignition Thresholds," Propell., Explos., Pyrotech. 32 (6), 431–434 (2007); DOI: 10.1002/prep.200700273.

    Article  Google Scholar 

  25. V. V. Gordeev, M. V. Kazutin, and N. V. Kozyrev, “Effect of Additives on CuO/Al Nanothermite Properties," J. Phys.: Conf. Ser. 894, 012116 (2017); DOI: 10.1088/1742-6596/894/1/012116.

    Article  Google Scholar 

  26. J. Dai, J. Xu, F. Wang, et al., “Facile Formation of Nitrocellulose-Coated Al/Bi2O3 Nanothermites with Excellent Energy Output and Improved Electrostatic Discharge Safety," Mater. Des. 143, 93–103 (2018); DOI: 10.1016/j.matdes.2018.01.056.

    Article  Google Scholar 

  27. Q. Luo, G. Liu, M. Zhu, and X. Jiang, “Constant Volume Combustion Properties of Al/Fe2O3/RDX Nanocomposite: The Effects of Its Particle Size and Chemical Constituents," Combust. Flame 238, 111938 (2022); DOI: 10.1016/j.combustflame.2021.111938.

    Article  Google Scholar 

  28. Z. Qiao, J. Shen, J. Wang, et al., “Fast Deflagration to Detonation Transition of Energetic Material Based on a Quasi-Core/Shell Structured Nanothermite Composite," Compos. Sci. Technol. 107, 113–119 (2015); DOI: 10.1016/j.compscitech.2014.12.005.

    Article  Google Scholar 

  29. Z. Zhang, Y. Shen, C. Wang, et al., “An Excellent Synergy between Cl-20 and Nanothermites in Flaming and Propelling with High Specific Impulse and Superior Safety to Electrostatic Discharge," Combust. Flame 240, 112024 (2022); DOI: 10.1016/j.combustflame.2022.112024.

    Article  Google Scholar 

  30. H. Wang, M. R. Zachariah, L. Xie, and G. Rao, “Ignition and Combustion Characterization of Nano-Al–AP and Nano-Al–CuO–AP Micro-sized Composites Produced by Electrospray Technique," Energy Procedia 66, 109–112 (2015); DOI: 10.1016/j.egypro.2015.02.063.

    Article  Google Scholar 

  31. J. Dai, F. Wang, C. Ru, et al., “Ammonium Perchlorate As an Effective Additive for Enhancing the Combustion and Propulsion Performance of Al/CuO Nanothermites," J. Phys. Chem. C 122 (18), 10240–10247 (2018); DOI: 10.1021/acs.jpcc.8b01514.

    Article  Google Scholar 

  32. Q. Luo et al., “Deflagration to Detonation Transition in Weakly Confined Conditions for a Type of Potentially Novel Green Primary Explosive: Al/Fe2O3/RDX Hybrid Nanocomposites," Defence Technol. 22, 28–36 (2023); DOI: 10.1016/j.dt.2021.11.011.

    Article  Google Scholar 

  33. V. V. Gordeev, M. V. Kazutin, and N. V. Kozyrev, “Effect of Nitrocellulose and 1-Methyl-3-Nitro-1,2,4-Triazole on Properties of CuO/Al and Bi2O3/Al Nanothermites," J. Phys.: Conf. Ser. 1666 (1), 012014 (2020); DOI: 10.1088/1742-6596/1666/1/012014.

    Article  Google Scholar 

  34. V. V. Gordeev, M. V. Kazutin, and N. V. Kozyrev, “Effect of a Mixture Composition on the CuO/Al/1Me-3N Explosion Force," Yuzh.-Sib. Nauch. Vest., No. 5(39), 138–143 (2021); DOI: 10.25699/SSSB.2021.39.5.005.

  35. V. V. Gordeev, M. V. Kazutin, and N. V. Kozyrev, “Study of Explosive Parameters of a MoO3/Al/1Me-3N Nanothermite Mixture Depending on Configuration Factors," Yuzh.-Sib. Nauch. Vest., No. 6(34), 183–188 (2020); DOI: 10.25699/o2048-7638-2008-j.

  36. V. V. Gordeev, M. V. Kazutin, and N. V. Kozyrev, “Effect of a 1Me-3N Additive on the Explosion Force of SnO2/Al and WO3/Al Nanothermite Mixtures," Yuzh.-Sib. Nauch. Vest., No. 6(40), 252–258 (2021); DOI: 10.25699/SSSB.2021.40.6.038.

  37. G. T. Sukhanov and A. Yu. Lukin, “Reaction of 3-Nitro-1,2,4-Triazolederivatives with Alkylating Agents. 1. Alkylation in the Presence of Alkali," Chem. Heterocycl. Compd. 41 (7), 861–865 (2005); DOI: 10.1007/s10593-005-0239-8.

    Article  Google Scholar 

  38. G. V. Belov, Thermodynamic Modeling: Methods, Algorithms, Software (Nauchnyi Mir, Moscow, 2002) [in Russian].

    Google Scholar 

  39. A. F. Belyaev et al., Combustion-to-Explosion Transition of Condensed Systems (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gordeev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 6, pp. 116-122. https://doi.org/10.15372/FGV20230614.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeev, V.V., Kazutin, M.V. & Kozyrev, N.V. Combustion Performance of a Bi2O3/Al/1Me-3N Mixture Depending on Its Prescription Configuration. Combust Explos Shock Waves 59, 776–782 (2023). https://doi.org/10.1134/S001050822306014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822306014X

Keywords

Navigation