Skip to main content
Log in

Burning Characteristics in a Wide Range of Pressure and Thermal Decomposition of AP/PBT Solid Propellants

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An attempt to understand the relation between the burning characteristics and thermal decomposition in a wide range of pressure is made in the present investigation based on solid propellants with ammonium perchlorate as an oxidizer and 3,3-diazomethylepoxybutane and tetrahydrofuran as a fuel binder. The burning rate measurement is carried out in a wide range of pressure: 1.0, 3.0, 7.0, 13.8, 15.0, and 20.0 MPa. The inflection point of the pressure exponent for ammonium perchlorate with and without oxalate and the flame extinguishing point both appear at 13.8 MPa. Various mechanisms of burning rate reduction by the quaternary ammonium salt and oxalate are analyzed by theoretical analysis, thermogravimetric analysis, and differential scanning calorimetry analysis. The burning rate and decomposition of the oxidizer and fuel binder with combustion modifiers and their overall impact on propellant combustion are studied. Due to modifiers, a transition between kinetically controlled combustion and diffusion controlled combustion is found to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. Abbreviations and notation: A3 is a mixture with identical fractions of BDNPF and BDNPA; AP is ammonium perchlorate; BDNPA is bis-(2,2-dinitroethyl)-acetaldehyde; BDNPF is bis-(2,2-dinitroethyl)-formaldehyde; CAOX is calcium oxalate; CTAC is hexadecyl trimethyl ammonium chloride; GY is glycerinum; HTPB is hydroxyl-terminated polybutadiene; PBT is 3,3-diazomethylepoxybutane and tetrahydrofuran; HTPB is hydroxyl-terminated polybutadiene; PVC is polyvinyl chloride; TMP is trimethylol propane; TDI is toluene diisocyanate.

REFERENCES

  1. C. Guo, Z. Wei, K. Xie, and N. Wang, “Thrust Control by Fluidic Injection in Solid Rocket Motors," J. Propul. Power 33 (4), 815–829 (2017); DOI: 10.2514/1.B36264.

    Article  Google Scholar 

  2. J. L. Sabourin, D. M. Dabbs, R. A. Yetter, et al., “Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion," ACS Nano 3 (12), 3945–3954 (2009); DOI: 10.1021/nn901006w.

    Article  Google Scholar 

  3. D. Trache et al., “Effect of Amide-Based Compounds on the Combustion Characteristics of Composite Solid Rocket Propellants," Arab. J. Chem. 12 (8), 3639–3651 (2019); DOI: 10.1016/j.arabjc.2015.11.016.

    Article  Google Scholar 

  4. T. Jarosz, A. Stolarczyk, A. Wawrzkiewicz-Jalowiecka, et al., “Glycidyl Azide Polymer and its Derivatives-Versatile Binders for Explosives and Pyrotechnics: Tutorial Review of Recent Progress," Molecules 24 (24), 4475 (2019); DOI: 10.3390/molecules24244475.

    Article  Google Scholar 

  5. S. Y. Dong and Z. L. Zhang, Principle of Solid Rocket Motor (Beijing Inst. of Technol. Press, Beijing, 1995).

    Google Scholar 

  6. C. Dennis and B. Bojko, “On the Combustion of Heterogeneous AP/HTPB Composite Propellants: A Review," Fuel 254, 115646 (2019); DOI: 10.1016/j.fuel.2019.115646.

    Article  Google Scholar 

  7. S. Chaturvedi and P. N. Dave, “Solid Propellants: AP/HTPB Composite Propellants," Arab. J. Chem. 12 (8), 2061–2068 (2019); DOI: 10.1016/j.arabjc.2014.12.033.

    Article  Google Scholar 

  8. D. Juknelevicius, P. Alenfelt, and A. Ramanavicius, “The Performance of Red Flare Pyrotechnic Compositions Modified with Gas Generating Additives," Propell., Explos., Pyrotech. 45 (4), 671–679 (2020); DOI: 10.1002/prep.201900322.

    Article  Google Scholar 

  9. R. Dubey, M. Chawla, P. F. Siril, and G. Singh, “Bi-Metallic Nanocomposites of Mn with Very High Catalytic Activity for Burning Rate Enhancement of Composite Solid Propellants," Thermochim. Acta. 572, 30–38 (2013); DOI: 10.1016/j.tca.2013.09.005.

    Article  Google Scholar 

  10. G. Singh, I. P. S. Kapoor, S. Dubey, and P. F. Siril, “Kinetics of Thermal Decomposition of Ammonium Perchlorate with Nanocrystals of Binary Transition Metal Ferrites," Propell., Explos., Pyrotech. 34 (1), 72–77 (2009); DOI: 10.1002/prep.200900017.

    Article  Google Scholar 

  11. Y. Liang and G. Li, “Catalytic Activities of Two Different Morphological Co3O4 on the Thermal Decomposition of Ammonium Perchlorate," Mater. Res. Express. 6 (8), 0850e8 (2019); DOI: 10.1088/2053-1591/ab27af.

    Article  Google Scholar 

  12. A. Manash and P. Kumar, “Comparison of Burn Rate and Thermal Decomposition of AP as Oxidizer and PVC and HTPB As Fuel Binder Based Composite Solid Propellants," Defence Technol. 15 (2), 227–232 (2019); DOI: 10.1016/j.dt.2018.08.010.

    Article  Google Scholar 

  13. M. W. Beckstead, “An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants," in 36th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit, Las Vegas, July 24–28, 2000; DOI: 10.2514/6.2000-3325.

  14. W. Zhang, X. Zhou, T. Bao, et al., Calculation Principle of Solid Propellant Properties (Sci. Press, Beijing, 2019).

    Google Scholar 

  15. S. Gordon and B. J. McBride, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman–Jouguet Detonations," NASA-SP-273 (1976).

  16. E. L. Petersen, S. Seal, M. Stephens, et al., “Self-Extinguishable Solid Propellant," Patent No. US8114229B1; Publ. February 12, 2012.

  17. M. A. Schroeder, R. A. Fifer, M. S. Miller, et al., “Condensed-phase Processes during Solid Propellant Combustion. V. Further Observations on Depth Profiling of Burned Surfaces of XM39 and M43 Propellants," ARL-TR-1143 (US. Army Res. Lab., 1996).

  18. C. R. Zaseck, S. F. Son, and T. L. Pourpoint,“Combustion of Micron-Aluminum and Hydrogen Peroxide Propellants," Combust. Flame 160 (1), 184–190 (2013); DOI: 10.1016/j.combustflame.2012.10.001.

    Article  Google Scholar 

  19. J. Wang, Y. Li, H. H. Wang, et al., “Atomic-Layer-Deposited ZnO on Carbon Black as High-Performance Catalysts for the Thermal Decomposition of Ammonium Perchlorate," Eur. J. Inorg. Chem. 2017 (25), 3154–3160 (2017); DOI: 10.1002/ejic.201700146.

    Article  Google Scholar 

  20. Y. Q. Zu, Y. Q. Zhao, K. Z. Xu, et al., “Preparation and Comparison of Catalytic Performance for Nano MgFe2O4, GO-Loaded MgFe2O4 and GO-Coated MgFe2O4 Nanocomposites," Ceram. Int. 42 (16), 18844–18850 (2016); DOI: 10.1016/j.ceramint.2016.09.030.

    Article  Google Scholar 

  21. Y. X. Yan, Q. Liu, J. Wang, et al., “Synthesis of ZnO Hollow Microspheres via an in-Situ Gas Growth Method," Powder Technol. 232, 134–140 (2012); DOI: 10.1016/j.powtec.2012.08.010.

    Article  Google Scholar 

  22. A. J. Han, J. J. Liao, M. Q. Ye, et al., “Preparation of Nano-MnFe2O4 and its Catalytic Performance of Thermal Decomposition of Ammonium Perchlorate," Chin. J. Chem. Eng. 19 (6), 1047–1051 (2011); DOI: 10.1016/S1004-9541(11)60090-6.

    Article  Google Scholar 

  23. S. G. Hosseini, R. Ahmadi, A. Ghavi, and A. Kashi, “Synthesis and Characterization of \(\alpha\)-Fe2O3 Mesoporous using SBA-15 Silica as Template and Investigation of its Catalytic Activity for Thermal Decomposition of Ammonium Perchlorate Particles," Powder Technol. 278, 316–322 (2015). DOI: 10.1016/j.powtec.2015.03.032.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhou.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 6, pp. 98-109. https://doi.org/10.15372/FGV20230612.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.Y., Huang, L., Wang, L.M. et al. Burning Characteristics in a Wide Range of Pressure and Thermal Decomposition of AP/PBT Solid Propellants. Combust Explos Shock Waves 59, 759–769 (2023). https://doi.org/10.1134/S0010508223060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223060126

Keywords

Navigation