Skip to main content
Log in

Subgrid-Scale Models for Predicting Premixed Methane–Air Flame Propagating in a Chamber with a Rectangular Obstacle

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Experimental and numerical studies of premixed methane–air flame dynamics in an obstructed chamber are carried out. In the experiment, high-speed video photography and pressure transducer measurements are used to study the combustion dynamics. In the numerical simulation, three subgrid-scale viscosity models and three subgrid-scale combustion models are selected to evaluate their individual predictions compared to the experimental data. The high-speed photographs show that the flame propagation process can be divided into four typical stages. When the flame front passes through the obstacle, two distinct vortex structures are formed. The volute flame is the result of the flame–vortex interaction. In addition, the combustion regime experiences a transition from “wrinkled flamelets" to “corrugated flamelets" and finally arrives at a “thin reaction zone regime."

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

REFERENCES

  1. S. B. Dorofeev, “Flame Acceleration and Explosion Safety Applications," Proc. Combust. Inst. 33 (2), 2161–2175 (2011); DOI: 10.1016/j.proci.2010.09.008.

    Article  Google Scholar 

  2. C. Luo, J. Zanganeh, and B. Moghtaderi, “A 3D Numerical Study on the Effects of Obstacles on Flame Propagation in a Cylindrical Explosion Vessel Connected to a Vented Tube," J. Loss Prev. Process Ind. 44, 53–61 (2016); DOI: 10.1016/j.jlp.2016.08.016.

    Article  Google Scholar 

  3. G. Li, Y. Du, S. Wang, et al., “Large Eddy Simulation and Experimental Study on Vented Gasoline–Air Mixture Explosions in a Semi-Confined Obstructed Pipe," J. Hazard. Mater. 339, 131–142 (2017); DOI: 10.1016/j.jhazmat.2017.06.018.

    Article  Google Scholar 

  4. G. Ciccarelli and S. B. Dorofeev, “Flame Acceleration and Transition to Detonation in Ducts," Prog. Energy Combust. Sci. 34 (4), 499–550 (2008); DOI: 10.1016/j.pecs.2007.11.002.

    Article  Google Scholar 

  5. Q. Li, M. Kellenberger, and G. Ciccarelli, “Geometric Influence on the Propagation of the Quasi-Detonations in a Stoichiometric H2–O2 Mixture," Fuel 269, 117396 (2020); DOI: 10.1016/j.fuel.2020.117396.

    Article  Google Scholar 

  6. H. Xiao and E. S. Oran, “Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen–Air Mixture in a Channel with an Array of Obstacles of Different Shapes," Combust. Flame 220, 378–393 (2020); DOI: 10.1016/j.combustflame.2020.07.013.

    Article  Google Scholar 

  7. P. Chen, Y. C. Li, F. J. Huang, et al., “Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in a Chamber for Three Obstacle BR Configurations," J. Loss Prev. Process Ind. 41, 48–54 (2016); DOI: 10.1016/j.jlp.2016.02.020.

    Article  Google Scholar 

  8. M. Yu, K. Zheng, and T. Chu, “Gas Explosion Flame Propagation over Various Hollow-Square Obstacles," J. Nat. Gas Sci. Eng. 30, 221–227 (2016); DOI: 10.1016/j.jngse.2016.02.009.

    Article  Google Scholar 

  9. Q. Li, G. Ciccarelli, X. Sun, et al., “Flame Propagation Across a Flexible Obstacle in a Square Cross-Section Channel," Int. J. Hydrogen Energy 43 (36), 17480–17491 (2018); DOI: 10.1016/j.ijhydene.2018.07.077.

    Article  Google Scholar 

  10. G. Luo, H. Dai, L. Dai, et al., “Review on Large Eddy Simulation of Turbulent Premixed Combustion in Tubes," J. Therm. Sci. 29, 853–867 (2020); DOI: 10.1007/s11630-020-1311-5.

    Article  ADS  Google Scholar 

  11. K. N. C. Bray and J. B. Moss, “A Unified Statistical Model of the Premixed Turbulent Flame," Acta Astronaut. 4 (3/4), 291–319 (1977); DOI: 10.1016/0094-57657790053-4.

    Article  ADS  Google Scholar 

  12. V. Di Sarli, A. Di Benedetto, and G. Russo, “Sub-Grid Scale Combustion Models for Large Eddy Simulation of Unsteady Premixed Flame Propagation around Obstacles," J. Hazard. Mater. 180 (1–3), 71–78 (2010); DOI: 10.1016/j.jhazmat.2010.03.006.

    Article  Google Scholar 

  13. S. N. D. H. Patel, S. Jarvis, S. S. Ibrahim, and G. K. Hargrave, “An Experimental and Numerical Investigation of Premixed Flame Deflagration in a Semiconfined Explosion Chamber," Proc. Combust. Inst. 29 (2), 1849–1854 (2002); DOI: 10.1016/S1540-74890280224-3.

    Article  Google Scholar 

  14. F. Charlette, C. Meneveau, and D. Veynante, “A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion. Part I. Non-Dynamic Formulation and Initial Tests," Combust. Flame 131 (1/2), 159–180 (2002); DOI: 10.1016/S0010-21800200400-5.

    Article  Google Scholar 

  15. V. Di Sarli, A. Di Benedetto, and G. Russo, “Large Eddy Simulation of Transient Premixed Flame–Vortex Interactions in Gas Explosions," Chem. Eng. Sci. 71, 539–551 (2002); DOI: 10.1016/j.ces.2011.11.034.

    Article  Google Scholar 

  16. C. Johansen and G. Ciccarelli, “Modeling the Initial Flame Acceleration in an Obstructed Channel Using Large Eddy Simulation," J. Loss Prev. Process Ind. 26 (4), 571–585 (2013); DOI: 10.1016/j.jlp.2012.12.005.

    Article  Google Scholar 

  17. C. T. Johansen and G. Ciccarelli, “Visualization of the Unburned Gas Flow Field Ahead of an Accelerating Flame in an Obstructed Square Channel," Combust. Flame 156 (2), 405–416 (2009); DOI: 10.1016/j.combustflame.2008.07.010.

    Article  Google Scholar 

  18. C. Y. Xu, L. X. Cong, Z. Yu, et al., “Numerical Simulation of Premixed Methane–Air Deflagration in a Semi-Confined Obstructed Chamber," J. Loss Prev. Process Ind. 34, 218–224 (2015); DOI: 10.1016/j.jlp.2015.02.007.

    Article  Google Scholar 

  19. V. L. Zimont, “Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds numbers," Fiz. Goreniya Vzryva 15 (3), 23–32 (1979) [Combust., Expl., Shock Waves 15 (3), 305–311 (1979)].

    Article  Google Scholar 

  20. M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, “Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion," Symp. (Int.) Combust. 27 (1), 917–925 (1998); DOI: 10.1016/S0082-07849880489-X.

    Article  Google Scholar 

  21. O. Colin, F. Ducros, D. Veynante, and T. Poinsot, “A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion," Phys. Fluids 12 (7), 1843–1863 (2000). DOI: 10.1063/1.870436.

    Article  ADS  MATH  Google Scholar 

  22. D. Veynante and V. Moureau, “Analysis of Dynamic Models for Large Eddy Simulations of Turbulent Premixed Combustion," Combust. Flame 162 (12), 4622–4642 (2000); DOI: 10.1016/j.combustflame.2015.09.020.

    Article  Google Scholar 

  23. S. R. Gubba, S. S. Ibrahim, W. Malalasekera, and A. R. Masri, “Measurements and LES Calculations of Turbulent Premixed Flame Propagation Past Repeated Obstacles," Combust. Flame 158 (12), 2465–2481 (2011); DOI: 10.1016/j.combustflame.2011.05.008.

    Article  Google Scholar 

  24. R. Knikker, D. Veynante, and C. Meneveau, “A Dynamic Flame Surface Density Model for Large Eddy Simulation of Turbulent Premixed Combustion," Phys. Fluids 16 (11), 91–94 (2004); DOI: 10.1063/1.1780549.

    Article  ADS  MATH  Google Scholar 

  25. A. R. Masri, S. S. Ibrahim, and B. J. Cadwallader, “Measurements and Large Eddy Simulation of Propagating Premixed Flames," Exp. Therm. Fluid Sci. 30 (7), 687–702 (2006); DOI: 10.1016/j.expthermflusci.2006.01.008.

    Article  Google Scholar 

  26. P. S. Volpiani, T. Schmitt, O. Vermorel, et al., “Large Eddy Simulation of Explosion Deflagrating Flames Using a Dynamic Wrinkling Formulation," Combust. Flame 186, 17–31 (2017); DOI: 10.1016/j.combustflame.2017.07.022.

    Article  Google Scholar 

  27. A. R. Masri, A. Al Harbi, S. Meares, and S. S. Ibrahim, “A Comparative Study of Turbulent Premixed Flames Propagating Past Repeated Obstacles," Ind. Eng. Chem. Res. 51 (22), 7690–7703 (2012); DOI: 10.1021/ie201928g.

    Article  Google Scholar 

  28. P. Chen, G. Luo, Y. Sun, and Q. Lv, “Impacts of Plate Slits on Flame Acceleration of Premixed Methane/Air in a Closed Tube," J. Energy Inst. 91 (4), 563–572 (2018); DOI: 10.1016/j.joei.2017.04.001.

    Article  Google Scholar 

  29. P. Chen, Y. Sun, Y. Li, and G. Luo, “Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in an Obstructed Chamber with Two Slits," J. Loss Prev. Process Ind. 49 (Pt B), 711–721 (2017); DOI: 10.1016/j.jlp.2016.11.005.

    Article  Google Scholar 

  30. J. Smagorinsky, “General Circulation Experiments with the Primitive Equations," Month. Weather Rev. 91 (3), 99–164 (1963); DOI: 10.1175/1520-04931963091<0099:GCEWTP>2.3.CO;2.

    Article  ADS  Google Scholar 

  31. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity Model," Phys. Fluids A 3 (7), 1760–1765 (1991); DOI: 10.1063/1.857955.

    Article  ADS  MATH  Google Scholar 

  32. D. K. Lilly, “A Proposed Modification of the Germano Subgrid-Scale Closure Method," Phys. Fluids A 4 (3), 633–635 (1992); DOI: 10.1063/1.858280.

    Article  ADS  Google Scholar 

  33. F. Nicoud and F. Ducros, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Qradient Tensor," Flow, Turbul. Combust. 62, 183–200 (1999); DOI: 10.1023/A:1009995426001.

    Article  MATH  Google Scholar 

  34. W.-W. Kim and S. Menon, “Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows," in 35th Aerospace Sciences Meeting and Exhibit, Reno, January 6–9, 1997, AIAA Paper No. 97-0210; DOI: 10.2514/6.1997-210.

  35. M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, “Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion," Symp. (Int.) Combust. 27 (1), 917–925 (1998); DOI: 10.1016/S0082-07849880489-X.

    Article  Google Scholar 

  36. E. R. Hawkes and R. S. Cant, “A Flame Surface Density Approach to Large-Eddy Simulation of Premixed Turbulent Combustion," Proc. Combust. Inst. 28 (1), 51–58 (2000); DOI: 10.1016/S0082-07840080194-0.

    Article  Google Scholar 

  37. B. Fiorina, R. Vicquelin, P. Auzillon, et al., “A Filtered Tabulated Chemistry Model for LES of Premixed Combustion," Combust. Flame 157 (3), 465–475 (2010); DOI: 10.1016/j.combustflame.2009.09.015.

    Article  Google Scholar 

  38. V. Zimont, W. Polifke, M. Bettelini, and W. Weisenstein, “An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure," J. Eng. Gas Turbines Power 120 (3), 526–532 (1998); DOI: 10.1115/1.2818178.

    Article  Google Scholar 

  39. N. Peters, Turbulent Combustion (Cambridge Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  40. C. Clanet and G. Searby, “On the “Tulip Flame" Phenomenon," Combust. Flame 105 (1-2), 225–238 (1996); DOI: 10.1016/0010-21809500195-6.

    Article  Google Scholar 

  41. H. Pitsch and L. Duchamp de Lageneste, “Large-Eddy Simulation of Premixed Turbulent Combustion Using a Level-Set Approach," Proc. Combust. Inst. 29 (2), 2001–2008 (2002); DOI: 10.1016/S1540-74890280244-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Luo or J. Q. Fang.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 5, pp. 135-149. https://doi.org/10.15372/FGV20230515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Zhang, L.J. & Fang, J.Q. Subgrid-Scale Models for Predicting Premixed Methane–Air Flame Propagating in a Chamber with a Rectangular Obstacle. Combust Explos Shock Waves 59, 657–670 (2023). https://doi.org/10.1134/S0010508223050155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223050155

Keywords

Navigation