Skip to main content
Log in

Combustion of the Diesel Fuel Atomized with Superheated Steam under Conditions of a Closed Combustion Chamber

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A pioneering study of the characteristics of combustion of liquid hydrocarbons in a superheated steam jet under conditions of a closed burner is performed by an example of the diesel fuel. An upgraded design of an original low-power burner is presented. It is based on the principle of fuel atomization by a high-velocity steam jet and offers a possibility of controlling injection of primary and secondary air. Amounts of pollutants ejected into air are determined for different air-to-fuel ratios inside the burner. First comparisons of the developed burner with a commercial liquid-fuel burner (Weishaupt burner) are performed. It is shown that addition of superheated steam ensures a high combustion efficiency and low contents of CO and NO\(_{x}\) in combustion products satisfying the most rigorous European standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. E. C. Zabetta, M. Hupa, and K. Saviharju, “Reducing NO\(_{x}\) Emissions Using Fuel Staging, Air Staging, and Selective Noncatalytic Reduction in Synergy," Ind. Eng. Chem. Res. 44 (13), 4552–4561 (2005); DOI: 10.1021/ie050051a.

    Article  Google Scholar 

  2. A. M. Elbaz, H. A. Moneib, K. M. Shebil, and W. L. Roberts, “Low NO\(_{x}\)-LPG Staged Combustion Double Swirl Flames," Renew. Energy 138, 303–315 (2019); DOI: 10.1016/j.renene.2019.01.070.

    Article  Google Scholar 

  3. V. Dhyani and K. A. Subramanian, “Control of Backfire and NO\(_{x}\) Emission Reduction in a Hydrogen Fueled Multi-Cylinder Spark Ignition Engine Using Cooled EGR and Water Injection Strategies," Int. J. Hydrogen Energy 44 (12), 6287–6298 (2019); DOI: 10.1016/j.ijhydene.2019.01.129.

    Article  Google Scholar 

  4. Z. Wang, S. Zhou, Y. Feng, and Y. Zhu, “Research of NO\(_{x}\) Reduction on a Low-Speed Two-Stroke Marine Diesel Engine by Using EGR (Exhaust Gas Recirculation)–CB (Cylinder Bypass) and EGB (Exhaust Gas Bypass)," Int. J. Hydrogen Energy 42 (30), 19337–19345 (2017); DOI: 10.1016/j.ijhydene.2017.06.009.

    Article  Google Scholar 

  5. S. K. Dhanuka, J. E. Temme, and J. F. Driscoll, “Lean-Limit Combustion Instabilities of a Lean Premixed Prevaporized Gas Turbine Combustor," Proc. Combust. Inst. 33 (2), 2961–2966 (2011); DOI: 10.1016/j.proci.2010.07.011.

    Article  Google Scholar 

  6. K. T. Kim, “Combustion Instability Feedback Mechanisms in a Lean-Premixed Swirl-Stabilized Combustor," Combust. Flame 171, 137–151 (2016); DOI: 10.1016/j.combustflame.2016.06.003.

    Article  Google Scholar 

  7. T. Buschhagen, R. Gejji, J. Philo, et al., “Self-Excited Transverse Combustion Instabilities in a High Pressure Lean Premixed Jet Flame," Proc. Combust. Inst. 37 (4), 5181–5188 (2019); DOI: 10.1016/j.proci.2018.07.086.

    Article  Google Scholar 

  8. J. S. Basha and R. B. Anand, “An Experimental Study in a CI Engine Using Nanoadditive Blended Water–Diesel Emulsion Fuel," Int. J. Green Energy 8 (3), 332–348 (2011); DOI: 10.1080/15435075.2011.557844.

    Article  Google Scholar 

  9. A. M. Ithnin, M. A. Ahmad, M. A. A. Bakar, et al., “Combustion Performance and Emission Analysis of Diesel Engine Fuelled with Water-in-Diesel Emulsion Fuel Made from Low-Grade Diesel Fuel," Energy Conver. Manag. 90, 375–382 (2015); DOI: 10.1016/j.enconman.2014.11.025.

    Article  Google Scholar 

  10. A. Cavaliere and M. De Joannon, “Mild Combustion," Prog. Energy Combust. Sci. 30 (4), 329–366 (2004); DOI: 10.1016/j.pecs.2004.02.003.

    Article  Google Scholar 

  11. P. Sabia, M. L. Lavadera, P. Giudicianni, et al., “CO2 and H2O Effect on Propane Auto-Ignition Delay Times under Mild Combustion Operative Conditions," Combust. Flame 162 (3), 533–543 (2015); DOI: 10.1016/j.combustflame.2014.08.009.

    Article  Google Scholar 

  12. B. B. Dally, E. Riesmeier, and N. Peters, “Effect of Fuel Mixture on Moderate and Intense Low Oxygen Dilution Combustion," Combust. Flame 137 (4), 418–431 (2004); DOI: 10.1016/j.combustflame.2004.02.011.

    Article  Google Scholar 

  13. W. Li, Z. Liu, Z. Wang, and Y. Xu, “Experimental Investigation of the Thermal and Diluent Effects of EGR Components on Combustion and NO\(_{x}\) Emissions of a Turbocharged Natural Gas SI Engine," Energy Convers. Manag. 88, 1041–1050 (2014); DOI: 10.1016/j.enconman.2014.09.051.

    Article  Google Scholar 

  14. S. Mohapatra, P. Nehe, S. K. Dash, and M. R. Vanteru, “Numerical Analysis of Lifted Spray Flames in Various Coflow Conditions," Combust. Sci. Technol. 192 (4), 680–700 (2019); DOI: 10.1080/00102202.2019.1590824.

    Article  Google Scholar 

  15. A. Farokhipour, E. Hamidpour, and E. Amani, “A Numerical Study of NO\(_{x}\) Reduction by Water Spray Injection in Gas Turbine Combustion Chambers," Fuel 212, 173–186 (2018); DOI: 10.1016/j.fuel.2017.10.033.

    Article  Google Scholar 

  16. N. Donohoe, K. A. Heufer, C. J. Aul, et al., “Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures," Combust. Flame 162 (4), 1126–1135 (2015); DOI: 10.1016/j.combustflame.2014.10.005.

    Article  Google Scholar 

  17. Sh. Li, S. Li, D. Mira, et al., “Investigation of Dilution Effects on Partially Premixed Swirling Syngas Flames Using a LES-LEM Approach," J. Energy Inst. 91 (6), 902–915 (2018). DOI: 10.1016/j.joei.2017.09.005.

    Article  Google Scholar 

  18. S. Mohapatra, S. Garnayak, B. J. Lee, et al., “Numerical and Chemical Kinetic Analysis to Evaluate the Effect of Steam Dilution and Pressure on Combustion of \(n\)-Dodecane in a Swirling Flow Environment," Fuel 288, 119710 (2021); DOI: 10.1016/j.fuel.2020.119710.

    Article  Google Scholar 

  19. I. S. Anufriev, E. P. Kopyev, I. S. Sadkin, and M. A. Mukhina, “NO\(_{x}\) Reduction by Steam Injection Method during Liquid Fuel and Waste Burning," Process Saf. Environ. Prot. 152, 240–248 (2021); DOI: 10.1016/j.psep.2021.06.016.

    Article  Google Scholar 

  20. I. S. Anufriev, E. P. Kopyev, S. V. Alekseenko, et al., “New Ecology Safe Waste-to-Energy Technology of Liquid Fuel Combustion with Superheated Steam," Energy 250, 123849 (2022); DOI: 10.1016/j.energy.2022.123849.

    Article  Google Scholar 

  21. DIN EN 267:2011-11. Automatic Forced Draught Burners for Liquid Fuels.

  22. I. S. Anufriev and E. P. Kopyev, “Diesel Fuel Combustion by Spraying in a Superheated Steam Jet," Fuel Process. Technol. 192, 154–169 (2019); DOI: 10.1016/j.fuproc.2019.04.027.

    Article  Google Scholar 

  23. I. S. Anufriev, E. P. Kopyev, M. A. Mukhina, and I. S. Sadkin, “Investigation into Characteristics of Combustion of \(n\)-Heptane Sprayed by Jet of Steam or Air," J. Eng. Thermophys. 31 (3), 420–428 (2022); DOI: 10.1134/S1810232822030055.

    Article  Google Scholar 

  24. I. S. Anufriev, S. V. Alekseenko, O. V. Sharypov, and E. P. Kopyev, “Diesel Fuel Combustion in a Direct-Flow Evaporative Burner with Superheated Steam Supply," Fuel 254, 115723 (2019); DOI: 10.1016/j.fuel.2019.115723.

    Article  Google Scholar 

  25. I. S. Anufriev, E. Yu. Shadrin, E. P. Kopyev, et al., “Study of Liquid Hydrocarbons Atomization by Supersonic Air or Steam Jet," Appl. Therm. Eng. 163, 114400 (2019); DOI: 10.1016/j.applthermaleng.2019.114400.

    Article  Google Scholar 

  26. E. Benini, S. Pandolfo, and S. Zoppellari, “Reduction of NO Emissions in a Turbojet Combustor by Direct Water/Steam Injection: Numerical and Experimental Assessment," Appl. Therm. Eng. 29, 3506–3510 (2009); DOI: 10.1016/j.applthermaleng.2009.06.004.

    Article  Google Scholar 

  27. G. Gonca, B. Sahin, Y. Ust, et al., “Comparison of Steam Injected Diesel Engine and Miller Cycled Diesel Engine by Using Two Zone Combustion Model," J. Energy Inst. 88 (1), 43–52 (2015); DOI: 10.1016/j.joei.2014.04.007.

    Article  Google Scholar 

  28. G. Gonca, B. Sahin, A. Parlak, et al., “The Effects of Steam Injection on the Performance and Emission Parameters of a Miller Cycle Diesel Engine," Energy 78, 266–275 (2014); DOI: 10.1016/j.energy.2014.10.002.

    Article  Google Scholar 

  29. G. Gonca, “Investigation of the Effects of Steam Injection on Performance and NO Emissions of a Diesel Engine Running with Ethanol–Diesel Blend," Energy Convers. Manag. 77, 450–457 (2014); DOI: 10.1016/j.enconman.2013.09.031.

    Article  Google Scholar 

  30. S. Göke, S. Schimek, S. Terhaar, et al., “Influence of Pressure and Steam Dilution on NO\(_{x}\) and CO Emissions in a Premixed Natural Gas Flame," J. Eng. Gas Turbines Power 136, 091508 (2014); DOI: 10.1115/1.4026942.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Kopyev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 102-110. https://doi.org/10.15372/FGV20230412.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopyev, E.P., Sadkin, I.S., Mukhina, M.A. et al. Combustion of the Diesel Fuel Atomized with Superheated Steam under Conditions of a Closed Combustion Chamber. Combust Explos Shock Waves 59, 488–496 (2023). https://doi.org/10.1134/S0010508223040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040123

Keywords

Navigation