Skip to main content
Log in

Experimental and Theoretical Study of Combustion of a Coal Dust Particle–Air Mixture in a Closed Spherical Volume

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Experimental data are presented on pressure variation rate during the combustion of a coal dust particle–air mixture in a closed spherical volume at various mass concentrations of coal dust. A physical-mathematical model of the combustion of a coal dust particle–air mixture in a closed spherical volume is formulated on the basis of equations of mechanics of dispersed media in a one-velocity one-temperature approximation. The combustion wave propagation velocity relative to a gas suspension and the burning rate of a coal dust particle are model parameters determined by matching computational results with experimental data. There is good agreement between them. The proposed approach can be used to assess the effect of coal dust combustion on shock wave intensity in coal mines during accidental methane explosions involving coal dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. B. Lewis and G. Von Elbe, Combustion, Flames, and Explosions of Gases (Academic Press, 1951).

    Google Scholar 

  2. S. V. Valiulin, A. A. Onischuk, D. Yu. Paleev, et al., “Influence of Organic Aerosol in Coal Mines on the Ignition Limit of Methane–Air Mixture," Khim. Fiz. 40 (4), 41–48 (2021) [Russ. J. Phys. Chem. B 15, 291–298 (2021); DOI: https://doi.org/10.1134/S199079312102024X].

    Article  Google Scholar 

  3. S. V. Valiulin, A. M. Baklanov, S. N. Dubtsov, et al., “Influence of the Nanoaerosol Fraction of Industrial Coal Dust on the Combustion of Methane–Air Mixtures," Fiz. Goreniya Vzryva 52 (4), 36–50 (2016) [Combust., Expl., Shock Waves 52 (4), 405–417 (2016); DOI: https://doi.org/10.1134/S0010508216040043].

    Article  Google Scholar 

  4. A. M. Baklanov, S. V. Valiulin, S. N. Dubtsov, et al., “Nanoaerosol Fraction of ManMade Coal Dust and Its Effect on the Explosion Hazard of Dust–Methane–Air Mixtures," Dokl. Akad. Nauk 461 (3), 295–299 (2015) [Dokl. Phys. Chem. 461 (1), 57–60 (2015); DOI: 10.1134/S0012501615030033].

    Article  Google Scholar 

  5. X. Cao, H. Wei, Z. Wang, et al., “Experimental Research on the Inhibition of Methane/Coal Dust Hybrid Explosions by the Ultrafine Water Mist," Fuel 331 (2), 125937 (2023); DOI: 10.1016/j.fuel.2022.125937.

    Article  Google Scholar 

  6. A. Yu. Krainov and K. M. Moiseeva, “Modeling of the Combustion of a Methane–Air Mixture in an Enclosed Spherical Volume," Inzh.-Fiz. Zh. 91 (4), 977–983 (2018) [J. Eng. Phys. Thermophys. 91, 918–924 (2018); DOI: https://doi.org/10.1007/s10891-018-1817-9].

    Article  ADS  Google Scholar 

  7. M. Mitu, D. Razus, and V. Schroeder, “Laminar Burning Velocities of Hydrogen–Blended Methane–Air and Natural Gas–Air Mixtures, Calculated From the Early Stage of \(p(t)\) Records in a Spherical Vessel," Energies 14 (22), 7556 (2021); DOI: 10.3390/en14227556.

    Article  Google Scholar 

  8. L. Zhang, Q. Yang, B. Shi, et al., “Influences of a Pipeline’s Bending Angle on the Propagation Law of Coal Dust Explosion Induced by Gas Explosion," Combust. Sci. Technol. 193 (1), 798–811 (2021); DOI: 10.1080/00102202.2019.1673381.

    Article  Google Scholar 

  9. Y. Niu, L. Zhang, B. Shi, et al., “Methane–Coal Dust Mixed Explosion in Transversal Pipe Networks," Combust. Sci. Technol. 193 (10), 1734–1746 (2021); DOI: 10.1080/00102202.2019.1711071.

    Article  Google Scholar 

  10. C. Guo, H. Shao, S. Jiang, et al., “Effect of Low-Concentration Coal Dust on Gas Explosion Propagation Law," Powder Technol. 367, 243–252 (2020); DOI: 10.1016/j.powtec.2020.03.045.

    Article  Google Scholar 

  11. K. M. Moiseeva, A. V. Pinaev, A. A. Vasil’ev, et al., “Investigation of Combustion of a Coal–Methane–Air Suspension in a Long Closed Channel," Fiz. Goreniya Vzryva 58 (5), 54–63 (2022) [Combust., Expl., Shock Waves 58 (5), 555–563 (2022); DOI: https://doi.org/10.1134/S0010508222050070].

    Article  Google Scholar 

  12. K. M. Moiseeva and A. Yu. Krainov, “Numerical Simulation of Spark Ignition of a Coal Dust–Air Mixture," Fiz. Goreniya Vzryva 54 (2), 61–70 (2018) [Combust., Expl., Shock Waves 54 (2), 179–188 (2018); DOI: https://doi.org/10.1134/S0010508218020077].

    Article  Google Scholar 

  13. A. Yu. Krainov, O. Yu. Lukashov, K. M. Moiseeva, and G. A. Kolegov, “Influence of Coal Dust Combustion on the Shock Wave Intensity From an Accidental Methane Explosion in a Mine," Ugol’, No. 9, 73–78 (2022); DOI: 10.18796/0041-5790-2022-9-73-78].

  14. The European Standard EN 14034-1-2011:2004+ A1:2011: “Determination of Explosion Characteristics of Dust Clouds. Part 1: Determination of the Maximum Explosion Pressure \(p_{\max}\) of Dust Clouds," Published 12.01.2011.

  15. The European Standard EN 14034-2:2006+ A1:2011: “Determination of Explosion Characteristics of Dust Clouds. Part 2: Determination of the Maximum Rate of Explosion Pressure Rise (\(dp/dt)_{\max}\) of Dust Clouds," Published 12.01.2011.

  16. R. K. Eckhoff, Dust Explosions in the Process Industries (Gulf Profess. Publ/, 2003).

  17. A. A. Dement’ev, K. M. Moiseeva, Y. Yu. Krainov, et al., “Comparison of the Results of Modeling the Flame Propagation in a Hybrid Gas Suspension with Experimental Data," Inzh.-Fiz. Zh. 89 (6), 1538–1546 (2016) [J. Eng. Phys. Thermophys. 89, 1514–1521 (2016); DOI: https://doi.org/10.1007/s10891-016-1521-6].

    Article  ADS  Google Scholar 

  18. R. I. Nigmatulin, Dynamics of Multiphase Media, Vol. 1 (Nauka, Moscow, 1987; Hemisphere, New York, 1991).

    Google Scholar 

  19. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution to Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Book  Google Scholar 

  20. Fundamentals of the Practical Theory of Combustion: Textbook for Higher-Education Institutions, Ed. by V. V. Pomerantsev (Energoatomizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  21. P. B. Vainshtein and R. I. Nigmatulin, “Combustion of Gas Mixtures with Particles," Prikl. Mekh. Tekh. Fiz. 12 (4), 19–33 (1971) [J. Appl. Mech. Tech. Phys. 12 (4), 502–514 (1971)].

    Article  ADS  Google Scholar 

  22. P. B. Vainshtein, “Radiation Flame Front in a Gas Mixture with Solid Particles," Prikl. Mekh. Tekh. Fiz. 14 (3), 83–91 (1973) [J. Appl. Mech. Tech. Phys. 14 (3), 363–370 (1973); DOI: https://doi.org/10.1007/BF00850951].

    Article  ADS  Google Scholar 

  23. G. E. Ozerova and A. M. Stepanov, “Calculation of the Propagation of a Radiational Flame over a Gas Suspension of Particles of a Solid Combustible," Fiz. Goreniya Vzryva 15 (2), 66–73 (1979) [Combust., Expl., Shock Waves 15 (2), 166–172 (1979); DOI: https://doi.org/10.1007/BF00790440].

    Article  Google Scholar 

  24. P. M. Krishenik, E. N. Rumanov, and K. G. Shkadinskii, “Modeling of Combustion Wave Propagation in a Carbon Dust/Gas Mixture," Combust. Flame 99 (3/4), 713–722 (1994); DOI: 10.1016/0010-2180(94)90066-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Krainov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 93-101. https://doi.org/10.15372/FGV20230411.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, K.M., Krainov, A.Y., Goloskokov, S.I. et al. Experimental and Theoretical Study of Combustion of a Coal Dust Particle–Air Mixture in a Closed Spherical Volume. Combust Explos Shock Waves 59, 479–487 (2023). https://doi.org/10.1134/S0010508223040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040111

Keywords

Navigation