Skip to main content
Log in

Non-Contact Acoustic Method for Determining the Pressure in the Combustion Chamber of a Model Solid Rocket Motor

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents a non-contact diagnostic technique for solid rocket motors (SRM) based on the analysis of acoustic vibrations generated by the supersonic jet of combustion products from the nozzle. The pressure in the combustion chamber of a E-5-0 model sold rocket motor was determined experimentally by a noninvasive control method using a dynamic microphone placed at a prescribed distance from the test object and recording the acoustic fields generated by the operating engine. Experiments confirmed the possibility of non-contact determination of combustion chamber pressure from the frequency of acoustic vibrations and the sound pressure generated by the jet of combustion products of the model SRM. Calculated pressures are in satisfactory agreement with the values recorded by an intra-chamber pressure transducer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. B. A. Chichkov, “Method of Vibration Monitoring of Rotary Machines," Nauch. Vestn. Mosk. Gos. Tekh. Univ. Grazhd. Aviats. 21 (1), 137–146 (2018); DOI: 10.26467/2079-0619-2018-21-1-137-146.

    Article  Google Scholar 

  2. P. Grabill, J. Scale, D. Wroblewski, and T. Brotherton, “iTEDS: the Intelligent Turbine Engine Diagnostic System," in 48th Int. Instrum. Symp. (San Diego, 2002).

  3. A. Grza̧dziela, “Analysis of Vibration Parameters of Ship Gas Turbine Engines," Polish Maritime Res. 13 (2) (48), 22–26 (2006).

    Google Scholar 

  4. M. Witos and R. Szczepanik, “Turbine Engine Health/Maintenance Status Monitoring with Use of Phase-Discrete Method of Blade Vibration Monitoring," Solid State Phenom. 147–149, 530–541 (2005); DOI: 10.4028/www.scientific.net/SSP.147-149.530.

    Google Scholar 

  5. M. Bielecki, S. Costagliola, and P. Gebalski, “Support Vibration Diagnostics and Limits in Gas Turbines," in ASME Turbo Expo 2016: Turbomachinery Technical Conf. and Exposition, Seoul, South Korea, June 13–17, 2016, Vol. 7A: Structures and Dynamics (2016); DOI: 10.1115/GT2016-56548.

  6. A. Bovsunovsky and O. Nosal, “Highly Sensitive Methods for Vibration Diagnostics of Fatigue Damage in Structural Elements of Aircraft Gas Turbine Engines," Proc. Struct. Integr., No. 35, 74–81 (2022); DOI: 10.1016/j.prostr.2021.12.050.

    Article  Google Scholar 

  7. A. V. Naidenov, “Diagnostics of Gas-Turbine Plants by Vibroacoustic Parameters," in Energy Saving and Innovative Technologies in the Fuel and Energy Complex: Proc. of the All-Russian Scientific and Practical Conference of Students, Graduate Students, Young Scientists and Specialists, Dedicated to the 50th Anniversary of the Foundation of the Tyumen Industrial Institute (Tyumen State Oil and Gas Institute, Tyumen, 2013), pp. 69–72.

  8. E. Udd and J. Benterou, “Improvements to High-Speed Monitoring of Events in Extreme Environments Using Fiber Bragg Grating Sensors," in Proc. of SPIE, Fiber Optic Sensors and Applications IX, Vol. 8370 (2012); DOI: 10.1117/12.915726.

  9. J. Benterou, C. V. Bennette, G. Cole, D. E. Hare, C. May, E. Udd, S. J. Mihailov, and P. Lu, “Embedded Fiber Optic Bragg Grating (FBG) Detonation Velocity Sensor," in Proc. of SPIE, Fiber Optic Sensors and Applications VI, Vol. 7316 (2009); DOI: 10.1117/12.819208.

  10. X. L. Chang, X. Y. He, B. Jian, and Z. L. Li, “The Experimental Research of Delamination Damage Location Based on FBG Sensors Network in Solid Rocket Motor Shell," Key Eng. Mater. 413/414, 47–54 (2009); DOI: 10.4028/www.scientific.net/KEM.413-414.47.

    Article  Google Scholar 

  11. A. A. Zhirnov, K. V. Stepanov, and S. G. Sazonkin, et al., “Study of Intra-Chamber Processes in Solid Rocket Motors by Fiber Optic Sensors," Sensors 21 (23), 7836 (2021); DOI: 10.3390/s21237836.

    Article  ADS  Google Scholar 

  12. L. Gulfetti, J. Colombo, A. Menalli, J. Benzoni, and K. Galli, “Experimental Study of Solid Propellant Ignition Transient and Flame Spreading under Convective Flows," Fiz. Goreniya Vzryva 36 (1), 119–130 (2000) [Combust., Expl., Shock Waves 36 (1), 108–118 (2000); https://doi.org/10.1007/BF02701519].

    Article  Google Scholar 

  13. E. Ya. Yudin, L. A. Borisov, and I. V. Gorenshtein, et al., Fighting Noise in Production: A Reference Book (Mashinostroenie, Moscow, 1985) [in Russian].

    Google Scholar 

  14. B. G. Trusov, “Software System for Modeling Phase and Chemical Equilibria at High Temperatures," Inzh. Zh.: Nauka Innovats. 1 (1) (2012); DOI: 10.18698/2308-6033-2012-1-31.

  15. E. Ya. Yudin, I. D. Rassadina, V. N. Nikol’skii, et al., Designer’s Handbook. Noise Protection (Stroiizdat, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Kovalev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 78-84. https://doi.org/10.15372/FGV20230409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, K.E., Yagodnikov, D.A. & Bobrov, A.N. Non-Contact Acoustic Method for Determining the Pressure in the Combustion Chamber of a Model Solid Rocket Motor. Combust Explos Shock Waves 59, 464–470 (2023). https://doi.org/10.1134/S0010508223040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040093

Keywords

Navigation