Skip to main content
Log in

Combustion Characteristics of High-Energy Material Containing Dispersed Aluminum, Boron, and Aluminum Borides

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Dispersed metallic fuels are energy-intensive components of various gel-like and composite solid propellants, which significantly improve the performance of propulsion systems. This study describes the combustion characteristics of a high-energy material (HEM) containing an oxidizer, a polymeric combustible binder, and a dispersed metallic fuel (aluminum Al), aluminum borides (AlB2 and AlB12), and amorphous boron. In a constant-pressure bomb, the burning rates of HEMs in a ressure range of 0.7–4.0 MPa are measured and it is revealed how aluminum dispersity and the nature of the metallic fuel affect burning rate, temperature, HEM sensitivity to pressure changes in the chamber, and the composition of condensed combustion products. An increase in the fineness of Al particles in HEMs significantly increases the burning rate and the HEM sensitivity to pressure changes. Replacing the microsized Al powder with amorphous boron (AlB2 or AlB12) in the HEM causes a (2.1–2.2)-fold increase in the burning rate at a pressure of 4.0 MPa, while the power exponent in the burning rate law \(u(p)=B p^{\nu}\) increases from 0.22 to 0.45.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. D. Sundaram, V. Yang, and R. Yetter, “Metal-Based Nanoenergetic Materials: Synthesis, Properties, and Applications," Prog. Energy Combust. Sci. 61, 293–365 (2017); DOI: 10.1016/j.pecs.2017.02.002.

    Article  Google Scholar 

  2. W.-Q. Pang, R. A. Yetter, L. T. DeLuca, et al., “Boron-Based Composite Energetic Materials (B-CEMs): Preparation, Combustion and Applications," Prog. Energy Combust. Sci. 93, 101038 (2022); DOI: 10.1016/j.pecs.2022.101038.

    Article  Google Scholar 

  3. M. S. McClain, I. E. Gunduz, and S. F. Son, “Additive Manufacturing of Ammonium Perchlorate Composite Propellant with High Solids Loadings," Proc. Combust. Inst. 37 (3), 3135–3142 (2019); DOI: 10.1016/j.proci.2018.05.052.

    Article  Google Scholar 

  4. L. T. DeLuca, “Overview of Al-Based Nanoenergetic Ingredients for Solid Rocket Propulsion," Defence Technol. 14 (5), 357–365 (2018); DOI: 10.1016/j.dt.2018.06.005.

    Article  Google Scholar 

  5. M. Anniyappan, M. B. Talawar, R. K. Sinha, and K. P. S. Murthy, “Review on Advanced Energetic Materials for Insensitive Munition Formulations," Fiz. Goreniya Vzryva 56 (5), 3–31 (2020) [Combust., Expl., Shock Waves 56 (5), 495–519 (2020); DOI: https://doi.org/10.1134/S0010508220050019].

    Article  Google Scholar 

  6. S. Park, S. Choi, K. Kim, et al., “Effects of Ammonium Perchlorate Particle Size, Ratio, and Total Contents on the Properties of a Composite Solid Propellant," Propell., Explos., Pyrotech. 45 (9), 1376–1381 (2020); DOI: 10.1002/prep.202000055.

    Article  Google Scholar 

  7. A. G. Korotkikh, I. V. Sorokin, E. A. Selikhova, and V. A. Arkhipov, “Ignition and Combustion of Composite Solid Propellants Based on a Double Oxidizer and Boron-Based Additives," Khim. Fiz. 39 (7), 32–40 (2020) [Russ. J. Phys. Chem. B 14, 592–600 (2020); DOI: https://doi.org/10.1134/S1990793120040089].

    Article  Google Scholar 

  8. A. N. Pivkina, D. B. Meerov, K. A. Monogarov, et al., “Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and Their Compounds on the Thermal Behavior of Boron Oxide," Fiz. Goreniya Vzryva 56 (2), 28–36 (2020) [Combust., Expl., Shock Waves 56 (2), 148–155 (2020); DOI: https://doi.org/10.1134/S0010508220020057].

    Article  Google Scholar 

  9. W.-Q. Pang, L. T. DeLuca, X.-Z. Fan, et al., “Combustion Behavior of AP/HTPB/Al Composite Propellant Containing Hydroborate Iron Compound," Combust. Flame 220, 157–167 (2020); DOI: 10.1016/j.combustflame.2020.06.037.

    Article  Google Scholar 

  10. A. G. Korotkikh and I. V. Sorokin, “Effect of Boron on the Combustion Parameters of Hem and Oxidation of Al/B and Ti/B Nanopowders," Izv. Vyssh. Uchebn. Zaved., Fiz. 64 (4), 3–8 (2021) [Russ. Phys. J. 64, 567–573 (2021); DOI: https://doi.org/10.1007/s11182-021-02387-2].

    Article  ADS  Google Scholar 

  11. A. G. Korotkikh, O. G. Glotov, V. A. Arkhipov, et al., “Effect of Iron and Boron Ultrafine Powders on Combustion of Aluminized Solid Propellants," Combust. Flame 178, 195–204 (2017); DOI: 10.1016/j.combustflame.2017.01.004.

    Article  Google Scholar 

  12. A. Okniński, P. Nowakowski, and A. Kasztankiewicz, “Survey of Low-Burn-Rate Solid Rocket Propellants," in Innovative Energetic Materials: Properties, Combustion Performance and Application, Ed. by W.-Q. Pang, L. T. DeLuca, A. A. Gromov, and A. S. Cumming (2020); DOI: 10.1007/978-981-15-4831-4_11.

  13. R. A. Yetter, “Progress Towards Nanoengineered Energetic Materials," Proc. Combust. Inst. 38 (1), 57–81 (2017); DOI: 10.1016/j.proci.2020.09.008.

    Article  Google Scholar 

  14. A. Braconnier, S. Gallier, F. Halter, and C. Chauveau, “Aluminum Combustion in CO2–CO–N2 Mixtures," Proc. Combust. Inst. 38 (3), 4355–4363 (2021); DOI: 10.1016/j.proci.2020.06.028.

    Article  Google Scholar 

  15. L. S. Yanovskii, V. V. Raznoschikov, I. S. Averkov, et al., “Evaluation of the Performance of Some Metals and Nonmetals in Solid Propellants for Rocket-Ramjet Engines," Fiz. Goreniya Vzryva 56 (1), 81–94 (2020) [Combust., Expl., Shock Waves 56 (1), 71–82 (2020); DOI: 10.1134/S0010508220010098].

    Article  Google Scholar 

  16. T. R. Sippel, S. F. Son, L. J. Groven, et al., “Exploring Mechanisms for Agglomerate Reduction in Composite Solid Propellants with Polyethylene Inclusion Modified Aluminum," Combust. Flame 162 (3), 846–854 (2015); DOI: 10.1016/j.combustflame.2014.08.013.

    Article  Google Scholar 

  17. O. G. Glotov, “Ignition and Combustion of Titanium Particles: Experimental Methods and Results," Usp. Fiz. Nauk 189 (2), 135–171 (2019) [Phys.-Usp. 62, 131–165 (2019); DOI: 10.3367/UFNe.2018.04.038349].

    Article  ADS  Google Scholar 

  18. A. G. Korotkikh, V. A. Arkhipov, I. V. Sorokin, and E. A. Selikhova, “Ignition and Combustion of High-Energy Materials Containing Aluminum, Boride, and Aluminum Diboride," Khim. Fiz. Mezoskop. 20 (1), 5–14 (2018).

  19. W. Ao, Y. Wang, and S. Wu, “Ignition Kinetics of Boron in Primary Combustion Products of Propellant Based on Its Unique Characteristics," Acta Astronaut. 136, 450–458 (2017); DOI: 10.1016/j.actaastro.2017.03.002.

    Article  ADS  Google Scholar 

  20. O. G. Glotov and V. E. Zarko, “Formation of Al Oxide Particles in Combustion of Aluminized Condensed Systems," Sci. Technol. Energ. Mater. 74 (6), 139–143 (2013).

    Google Scholar 

  21. A. P. Denisyuk, N. Duy Tuan, and V. A. Sizov, “Combustion Behavior of the Inorganic Nitrates-Based Compositions. Part II: Effect of Al and Al–Mg Alloy on Burning Rate," Propell., Explos., Pyrotech. 47 (5), Article No. e202100145 (2022); DOI: 10.1002/prep.202100145.

    Article  Google Scholar 

  22. R. K. Walzel, V. I. Levitas, and M. L. Pantoya, “Aluminum Particle Reactivity As a Function of Alumina Shell Structure: Amorphous versus Crystalline," Powder Technol. 374, 33–39 (2020); DOI: 10.1016/j.powtec.2020.06.084.

    Article  Google Scholar 

  23. D. A. Yagodnikov, Sh. L. Guseinov, P. A. Storozhenko, et al., “Morphologic, Chemical, and Spectral Analyses of Combustion Products of Micro- and Nanodispersed Particles of Aluminum Borides," Dokl. Akad. Nauk 484 (1), 44–47 (2019) [Dokl. Chem. 484, 5–7 (2019); DOI: https://doi.org/10.1134/S0012500819010038].

    Article  Google Scholar 

  24. L. S. Yanovskii, Energy-Intensive Fuels for Aircraft and Rocket Engines (Fizmatlit, Moscow, 2009) [in Russian].

    Book  Google Scholar 

  25. Sh. Adil and B. S. Murty, “Effect of Milling on the Oxidation Kinetics of Aluminium + Boron Mixture and Nanocrystalline Aluminium Boride (AlB12)," Thermochim. Acta 678, 178306 (2019); DOI: 10.1016/j.tca.2019.178306.

    Article  Google Scholar 

  26. D. Liang, R. Xiao, J. Liu, and Y. Wang, “Ignition and Heterogeneous Combustion of Aluminum Boride and Boron–Aluminum Blend," Aerospace Sci. Technol. 84, 1081–1091 (2019); DOI: 10.1016/j.ast.2018.11.046.

    Article  Google Scholar 

  27. A. G. Korotkikh and I. V. Sorokin, “Effect of Me/B-Powder on the Ignition of High-Energy Materials," Propell., Explos., Pyrotech. 46 (11), 1709-1716 (2021); DOI: 10.1002/prep.202100180.

    Article  Google Scholar 

  28. A. G. Korotkikh, I. V. Sorokin, and V. A. Arkhipov, “Ignition of High Energy Material Containing Ultradispersed Al/B Powder," Khim. Fiz. 41 (3), 41–48 (2022) [Russ. J. Phys. Chem. B 16, 253–259 (2022); DOI: https://doi.org/10.1134/S1990793122020075].

    Article  Google Scholar 

  29. A. G. Korotkikh, I. V. Sorokin, and V. A. Arkhipov, “Laser Ignition of Aluminum and Boron Based Powder Systems," Fiz. Goreniya Vzryva 58 (4), 32–40 (2022) [Combust., Expl., Shock Waves 58 (4), 422–429 (2022); DOI: https://doi.org/10.1134/S0010508222040049].

    Article  Google Scholar 

  30. A. G. Korotkikh, I. V. Sorokin, and V. A. Arkhipov, “Effect of Ammonium Nitrate and Combustible Binder on the Ignition Characteristics of High-Energy Materials Containing Aluminum Borides," Fiz. Goreniya Vzryva 58 (5), 96–105 (2022) [Combust., Expl., Shock Waves 58 (5), 593–601 (2022); DOI: https://doi.org/10.1134/S0010508222050124].

    Article  Google Scholar 

  31. W.-Q. Pang, L. T. De Luca, X. Zh. Fan, et al., Boron-Based Fuel-Rich Propellant: Properties, Combustion, and Technology Aspects (CRC Press, Boca Raton, 2019); DOI: 10.1201/9780429030680.

    Book  Google Scholar 

  32. D. B. Meerov, K. A. Monogarov, N. V. Muravyev, et al., “Prospects of Using Boron Powders as Fuel. III. Influence of Polymer Binders on the Composition of Condensed Gasification Products of Model Boron-Containing Compositions," Fiz. Goreniya Vzryva 57 (5), 42–54 (2021) [Combust., Expl., Shock Waves 57 (5), 42–54 (2021); DOI: https://doi.org/10.1134/S001050822105004X].

    Article  Google Scholar 

  33. D. A. Yagodnikov, A. V. Voronetskii, and V. I. Sarab’ev, “Ignition and Combustion of Pyrotechnic Compositions Based on Micro- and Nanoparticles of Aluminum Diboride in Air Flow in a Two-Zone Combustion Chamber," Fiz. Goreniya Vzryva 52 (3), 51–58 (2016) [Combust., Expl., Shock Waves 52 (3), 300–306 (2016); DOI: https://doi.org/10.1134/S0010508216030072].

    Article  Google Scholar 

  34. G. V. Belov and B. G. Trusov, Thermodynamic Simulation of Chemically Reacting Systems (Bauman Moscow State Tech. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Korotkikh.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 52-59. https://doi.org/10.15372/FGV20230406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkikh, A.G., Sorokin, I.V., Teplov, D.V. et al. Combustion Characteristics of High-Energy Material Containing Dispersed Aluminum, Boron, and Aluminum Borides. Combust Explos Shock Waves 59, 440–446 (2023). https://doi.org/10.1134/S0010508223040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040068

Keywords

Navigation