Skip to main content
Log in

Flame Acceleration in a Channel: Effects of the Channel Width and Wall Roughness

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of numerical simulations of flame acceleration in a semi-open channel filled by acetylene-based mixtures are presented. The computations are performed by the advanced dissipationless method CABARE. The effects of the channel width and the roughness of the inner wall of the channel on the flame evolution dynamics at various stages of the flame acceleration process are demonstrated based on comparisons of results obtained in different formulations. In particular, it is shown that, as the channel width becomes larger, the flame velocity and the velocity fluctuation amplitude at the quasi-steady stage of flame propagation increase. It is also demonstrated that flow deceleration at the channel walls produces the most pronounced effect at the stage of quasi-steady propagation of the flame owing to faster development of the boundary layer and vortex generation in the near-wall region and vortex interaction with the flame extended along the channel walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. C. P. Cooney, Yeliana, J. J. Worm, and J. D. Naber, “Combustion Characterization in an Internal Combustion Engine with Ethanol–Gasoline Blended Fuels Varying Compression Ratios and Ignition Timing," Energy Fuels 25 (5), 2319–2324 (2009); DOI: 10.1021/ef800899r.

    Article  Google Scholar 

  2. L. Li, J. Wang, Z. Wang, and H. Liu, “Combustion and Emissions of Compression Ignition in a Direct Injection Diesel Engine Fueled with Pentanol," Energy 80, 575–581 (2015); DOI: 10.1016/j.energy.2014.12.013.

    Article  Google Scholar 

  3. M. J. Abedin, H. H. Masjuki, M. A. Kalam, et al., “Energy Balance of Internal Combustion Engines Using Alternative Fuels," Renew. Sustain. Energy Rev. 26, 20–33 (2013); DOI: 10.1016/j.rser.2013.05.049.

    Article  Google Scholar 

  4. M. A. Fayad, “Effect of Renewable Fuel and Injection Strategies on Combustion Characteristics and Gaseous Emissions in Diesel Engines," Energy Sources, Pt. A: Recovery, Utilization and Environmental Effects 42 (4), 460–470 (2022); DOI: 10.1080/15567036.2019.1587091.

    Article  Google Scholar 

  5. N. N. Mustafi, R. R. Raine, and S. Verhelst, “Combustion and Emissions Characteristics of a Dual Fuel Engine Operated on Alternative Gaseous Fuels," Fuel 109, 669–678 (2013); DOI: 10.1016/j.fuel.2013.03.007.

    Article  Google Scholar 

  6. Ch. Ji, Sh. Wang, and B. Zhang, “Performance of a Hybrid Hydrogen–Gasoline Engine Under Various Operating Conditions," Appl. Energy 97, 584–589 (2012); DOI: 10.1016/j.apenergy.2011.11.056.

    Article  Google Scholar 

  7. J. Haller and T. Link, “Thermodynamic Concept for an Efficient Zero-Emission Combustion of Hydrogen and Oxygen in Stationary Internal Combustion Engines with High Power Density," Int. J. Hydrogen Energy 42 (44), 27374–27387 (2017); DOI: 10.1016/j.ijhydene.2017.08.168.

    Article  Google Scholar 

  8. M. Ilbas, I. Yilmaz, and Y. Kaplan, “Investigations of Hydrogen and Hydrogen–Hydrocarbon Composite Fuel Combustion and NO\(_{x}\) Emission Characteristics in a Model Combustor," Int. J. Hydrogen Energy 30 (10), 1139–1147 (2005); DOI: 10.1016/j.ijhydene.2004.10.016.

    Article  Google Scholar 

  9. P. Wolański, “Detonative Propulsion," Proc. Combust. Inst. 34 (1), 125–158 (2013); DOI: 10.1016/j.proci.2012.10.005.

    Article  Google Scholar 

  10. B. A. Rankin, M. L. Fotia, A. G. Naples, et al., “Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies," J. Propul. Power 33 (1), 131–143 (2017); DOI: 10.2514/1.B36303.

    Article  Google Scholar 

  11. N. N. Smirnov, V. B. Betelin, V. F. Nikitin, et al., “Detonation Engine Fed by Acetylene–Oxygen Mixture," Acta Astronaut. 104 (1), 134–146 (2014); DOI: 10.1016/j.actaastro.2014.07.019.

    Article  ADS  Google Scholar 

  12. E. V. Mikhalchenko and V. F. Nikitin, “Rotating Detonation Engine Fed by Acetylene–Oxygen Combustible Mixture Modeling," AIP Conf. Proc. 2304, 020022 (2020); DOI: 10.1063/5.0034711.

  13. S. B. Zhou, H. Ma, S. Chen, et al., “Experimental Investigation on Propagation Characteristics of Rotating Detonation Wave with a Hydrogen–Ethylene–Acetylene Fuel," Acta Astronaut. 157, 310–320 (2019); DOI: 10.1016/j.actaastro.2019.01.009.

    Article  ADS  Google Scholar 

  14. T. Lakshmanan and G. Nagarajan, “Experimental Investigation of Port Injection of Acetylene in DI Diesel Engine in Dual Fuel Mode," Fuel. 90 (8), 2571–2577 (2011); DOI: 10.1016/j.fuel.2011.03.039.

    Article  Google Scholar 

  15. V. F. Nikitin and E. V. Mikhalchenko, “Safety of a Rotating Detonation Engine Fed by Acetylene–Oxygen Mixture Launching Stage," Acta Astronaut. 194, 496–503 (2022); DOI: 10.1016/j.actaastro.2021.11.035.

    Article  ADS  Google Scholar 

  16. Y. Wu, Q. Zheng, and Ch. Weng, “An Experimental Study on the Detonation Transmission Behaviours in Acetylene–Oxygen–Argon Mixtures," Energy 143, 554–561 (2018); DOI: 10.1016/j.energy.2017.11.019.

    Article  Google Scholar 

  17. P. Krivosheyev and O. Penyazkov, “Analysis of the Final Stage of Flame Acceleration and the Onset of Detonation in a Cylindrical Tube Using High-Speed Stereoscopic Imaging," Combust. Flame. 216, 146–160 (2020); DOI: 10.1016/j.combustflame.2020.02.027.

    Article  Google Scholar 

  18. P. N. Krivosheyev, A. O. Novitski, and O. G. Penyazkov, “Evolution of the Reaction Front Structure and Shape on Flame Acceleration and the Deflagration-to-Detonation Transition," Khim. Fiz. 41 (8), 38–47 (2022) [Russ. J. Phys. Chem. B 16, 661–669 (2022); DOI: https://doi.org/10.1134/S1990793122040248].

    Article  Google Scholar 

  19. P. Krivosheyev, A. Novitski, and O. Penyazkov, “Flame Front Dynamics, Shape and Structure on Acceleration and Deflagration-To-Detonation Transition," Acta Astronaut. 204, 692–704 (2023); DOI: 10.1016/j.actaastro.2022.10.016.

    Article  ADS  Google Scholar 

  20. E. S. Oran and V. N. Gamezo, “Origins of the Deflagration-to-Detonation Transition in Gas-Phase Combustion," Combust. Flame. 148 (1–2), 4–47 (2007); DOI: 10.1016/j.combustflame.2006.07.010.

    Article  Google Scholar 

  21. M. A. Liberman, M. F. Ivanov, A. D. Kiverin, et al., “Deflagration-to-Detonation Transition in Highly Reactive Combustible Mixtures," Acta Astronaut. 67 (7/8), 688–701 (2010); DOI: 10.1016/j.actaastro.2010.05.024.

    Article  ADS  Google Scholar 

  22. A. D. Kiverin and I. S. Yakovenko, “High-Speed Flame Propagation in a Channel and Transition to Detonation," Teplofiz. Vys. Temp. 58 (4), 707–716 (2020) [High Temp. 58, 647–654 (2020); DOI: https://doi.org/10.1134/S0018151X20040070].

    Article  Google Scholar 

  23. K. Yoshida, K. Hayashi, Y. Morii, et al., “Study on Behavior of Methane/Oxygen Gas Detonation near Propagation Limit in Small Diameter Tube: Effect of Tube Diameter," Combust. Sci. Technol. 188 (11/12), 2012–2025 (2016); DOI: 10.1080/00102202.2016.1213989.

    Article  Google Scholar 

  24. J. Li, W. H. Lai, and K. Chung, “Tube Diameter Effect on Deflagration-to-Detonation Transition of Propane–Oxygen Mixtures," Shock Waves 16 (2), 109–117 (2006); DOI: 10.1007/s00193-006-0056-8.

    Article  ADS  Google Scholar 

  25. M. Kuznetsov, M. Liberman, and I. Matsukov, “Experimental Study of the Preheat Zone Formation and Deflagration to Detonation Transition," Combust. Sci. Technol. 182 (11/12), 1628–1644 (2010); DOI: 10.1080/00102202.2010.497327.

    Article  Google Scholar 

  26. B. Zhang, “The Influence of Wall Roughness on Detonation Limits in Hydrogen–Oxygen Mixture," Combust. Flame 169, 333–339 (2016); DOI: 10.1016/j.combustflame.2016.05.003.

    Article  Google Scholar 

  27. Sh. Maeda, M. Fujisawa, Sh. Ienaga, et al., “Effect of Sandpaper-Like Small Wall Roughness on Deflagration-to-Detonation Transition in a Hydrogen–Oxygen Mixture," Proc. Combust. Inst. 37 (3), 3609–3616 (2019); DOI: 10.1016/j.proci.2018.07.119.

    Article  Google Scholar 

  28. M. Kuznetsov, V. Alekseev, I. Matsukov, and S. Dorofeev, “DDT in a Smooth Tube Filled with a Hydrogen–Oxygen Mixture," Shock Waves 14, 205–215 (2005); DOI: 10.1007/s00193-005-0265-6.

    Article  ADS  Google Scholar 

  29. “Numerical Reactive Gas-Dynamics Software Package," https://github.com/yakovenko-ivan/NRG.

  30. V. M. Golovizin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkikh, New Computational Fluid Dynamics Algorithms for Multiprocessor Computing Systems (Izd. Mosk. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  31. V. Bykov, A. Kiverin, A. Koksharov, and I. Yakovenko, “Analysis of Transient Combustion with the Use of Contemporary CFD Techniques," Comput. Fluids 194, 104310 (2019); DOI: 10.1016/j.compfluid.2019.104310.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. F. Ivanov, A. D. Kiverin, I. S. Yakovenko, and M. A. Liberman, “Hydrogen–Oxygen Flame Acceleration and Deflagration-to-Detonation Transition in Three-Dimensional Rectangular Channels with No-Slip Walls," Int. J. Hydrogen Energy 38 (36), 16427–16440 (2013); DOI: 10.1016/j.ijhydene.2013.08.124.

    Article  Google Scholar 

  33. A. D. Kiverin, I. S. Yakovenko, and M. F. Ivanov, “On the Structure and Stability of Supersonic Hydrogen Flames in Channels," Int. J. Hydrogen Energy 41 (47), 22465–22478 (2016); DOI: 10.1016/j.ijhydene.2016.10.007.

    Article  Google Scholar 

  34. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II (Springer-Verlag, 1991, 1996).

    Book  MATH  Google Scholar 

  35. B. J. McBridge, S. Gordon, and M. A. Reno, “Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species," NASA Tech. Memorandum No. 4513 (1993); https://ntrs.nasa.gov/citations/19940013151.

  36. R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN: A Software Package for the Analysis of Gas-Phase Chemical and Plasma Kinetic (Release 3.6) (Reaction Des., San Diego, 2000).

  37. I. S. Yakovenko, A. V. Yarkov, A. V. Tyurnin, et al., “Evaluation of the Capabilities of Modern Kinetic Mechanisms of Acetylene Oxidation for Modeling Nonstationary Combustion Processes," Vest. Mosk. Gos. Tekh. Univ. Baumana, Ser. Estestv. Nauki 5 (104), 62–85 (2022); DOI: 10.18698/1812-3368-2022-5-62-85.

    Article  Google Scholar 

  38. B. N. Varatharajan and F. A. Williams, “Chemical-Kinetic Descriptions of High-Temperature Ignition and Detonation of Acetylene–Oxygen-Diluent Systems," Combust. Flame 124 (4), 624–645 (2001); DOI: 10.1016/S0010-2180(00)00235-2.

    Article  Google Scholar 

  39. O. Dounia, O. Vermorel, A. Misdariis, and T. Poinsot, “Influence of Kinetics on DDT Simulations," Combust. Flame 200, 1–14 (2019); DOI: 10.1016/j.combustflame.2018.11.009.

    Article  Google Scholar 

  40. A. M. Tereza, S. P. Medvedev, and V. N. Smirnov, “Experimental Study and Numerical Simulation of Chemiluminescence Emission during the Self-ignition of Hydrocarbon Fuels," Acta Astronaut. 163, 18–24 (2019); DOI: 10.1016/j.actaastro.2019.03.001.

    Article  ADS  Google Scholar 

  41. A. M. Tereza, G. L. Agafonov, A. S. Betev, and S. P. Medvedev, “Reduction of the Detailed Kinetic Mechanism for Efficient Simulation of Ignition Delay for Mixtures of Methane and Acetylene with Oxygen," Khim. Fiz. 39 (12), 29–36 (2020); DOI: 10.31857/S0207401X20120158.

    Google Scholar 

  42. E. Rokni, A. Moghaddas, O. Askari, and H. Metghalchi, “Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures," J. Energy Res. Technol. 137 (1), 012204 (2015); DOI: 10.1115/1.4028363.

    Article  Google Scholar 

  43. A. D. Kiverin, A. V. Turnin, and I. S. Yakovenko, “Scalability of Flame Propagation in a Channel," Khim. Fiz. 40 (12), 18–22 (2021) [Russ. J. Phys. Chem. B 15, 984–988 (2021); DOI: https://doi.org/10.1134/S1990793121060191].

    Article  Google Scholar 

  44. I. Yakovenko, A. Kiverin, P. Krivosheyev, et al., “Burning Rate Estimation Based on Flame Evolution in a Channel," Acta Astronaut. 204, 768–775 (2023); DOI: 10.1016/j.actaastro.2022.10.036.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yarkov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 25-34. https://doi.org/10.15372/FGV20230403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarkov, A.V., Kiverin, A.D. & Yakovenko, I.S. Flame Acceleration in a Channel: Effects of the Channel Width and Wall Roughness. Combust Explos Shock Waves 59, 415–423 (2023). https://doi.org/10.1134/S0010508223040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040032

Keywords

Navigation