Skip to main content
Log in

Numerical Simulation of Thermal Choking of a Channel during Combustion of a Hydrogen–Air Mixture in a Supersonic Flow

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of simulations of a high-velocity reacting flow of a non-premixed hydrogen–air mixture in a channel with sudden expansion in the form of backward-facing steps with transverse injection of hydrogen jets are reported. The computations are performed with the Ansys Fluent software package based on solving three-dimensional unsteady Reynolds-averaged Navier–Stokes equations supplemented with the \(k{-}\omega\) SST turbulence model and detailed chemical kinetics of hydrogen combustion in air. The simulations predict self-ignition of the hydrogen–air mixture subsequently transforming to intense combustion with flame flashback from the ignition region to the injection section. It is demonstrated that combustion occurs in thick subsonic regions, which merge at the channel axis in areas of elevated heat release, thus, forming a thermal throat. As a result, a system of normal shock waves is formed, which separate the boundary layer from the channel wall. The reverse flow transfers hot reaction products toward the step wall; thus, the thermal throat and shock waves are shifted upstream. As a result, the combustion wave and the shock wave enter the injector area, the shock wave merges with the bow shock ahead of the jets, and thermal choking of the channel occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. J. Chang, N. Li, K. Xu, et al., “Recent Research Progress on Unstart Mechanism, Detection and Control of Hypersonic Inlet," Prog. Aerosp. Sci. 89, 1–22 (2017); DOI: 10.1016/j.paerosci.2016.12.001.

    Article  ADS  Google Scholar 

  2. P. E. Rodi, S. Emami, and C. A. Trexler, “Unsteady Pressure Behavior in a Ramjet/Scramjet Inlet," J. Propul. Power 12, (3), 486–493 (1996); DOI: 10.2514/3.24061.

    Article  Google Scholar 

  3. H.-J. Tan, S. Sun, and Z.-L. Yin, “Oscillatory Flows of Rectangular Hypersonic Inlet Unstart Caused by Downstream Mass-Flow Choking," J. Propul. Power 25 (1), 138–147 (2009); DOI: 10.2514/1.37914.

    Article  Google Scholar 

  4. H. Do, S. Im, M. G. Mungal, and M. A. Cappelli, “The Influence of Boundary Layers on Supersonic Inlet Flow Unstart Induced by Mass Injection," Exp. Fluids 51, 679–691 (2011). DOI: 10.1007/s00348-011-1077-3.

    Article  ADS  Google Scholar 

  5. G. Zhao, J. Du, H. Yang, et al., “Effects of Injection on Flame Flashback in Supersonic Crossflow," Aerosp. Sci. Technol. 120, 107226 (2022); DOI: 10.1016/j.ast.2021.107226.

    Article  Google Scholar 

  6. M. A. Frost, D. Y. Gangurde, A. Paull, and D. J. Mee, “Boundary-Layer Separation due to Combustion-Induced Pressure Rise in a Supersonic Flow," AIAA J. 47 (4), 1050–1053 (2009). DOI: 10.2514/1.40868.

    Article  ADS  Google Scholar 

  7. B. Xiong, X. Fan, Y. Wang, et al., “Back-Pressure Effects on Unsteadiness of Separation Shock in a Rectangular Duct at Mach 3," Acta Astronaut. 141, 248–254 (2017); DOI: 10.1016/j.actaastro.2017.09.032.

    Article  ADS  Google Scholar 

  8. M. G. Owens, S. Mullagiri, C. Segal, et al., “Thermal choking Analyses in a Supersonic Combustor," J. Propul. Power 17 (3), 611–616 (2001); DOI: 10.2514/2.5785.

    Article  Google Scholar 

  9. S. Mashio, K. Kurashina, T. Bamba, et al., “Unstart Phenomenon due to Thermal Choke in Scramjet Module," AIAA Paper No. 2001-1887 (2001); DOI: 10.2514/6.2001-1887.

  10. S. O’Byrne, M. Doolan, S. R. Olsen, and A. F. P. Houwing, “Analysis of Transient Thermal Choking Processes in a Model Scramjet Engine," J. Propul. Power 16 (5), 808–814 (2000); DOI: 10.2514/2.5645.

    Article  Google Scholar 

  11. V. M. Shibkov, “Effect of Heat Release on the Gas Flow in a Variable-Area Channel," Teplofiz. Vys. Temp. 57 (3), 353–360 (2019).

    Article  Google Scholar 

  12. V. I. Zvegintsev, “Gas-Dynamic Problems in Off-Design Operation of Supersonic Jets (Review)," Teplofiz. Aeromekh. 24 (6), 829–858 (2017) [Thermophys. Aeromech. 24 (6), 807–834 (2017)].

    Article  ADS  Google Scholar 

  13. Q. Liu, A. Passaro, D. Baccarella, and H. Do, “Ethylene Flame Dynamics and Inlet Unstart in a Model Scramjet," J. Propul. Power 30 (6), 1577–1585 (2014); DOI: 10.2514/1.B35214.

    Article  Google Scholar 

  14. S. Im, D. Baccarella, B. McGann, et al., “Unstart Phenomena Induced by Mass Addition and Heat Release in a Model Scramjet," J. Fluid Mech. 797, 604–629 (2016); DOI: 10.1017/jfm.2016.282.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. D. Baccarella, Q. Liu, B. J. McGann, and T. Lee, “Combustion Induced Choking and Unstart Initiation in a Circular Constant-Area Supersonic Flow," AIAA J. 57 (12), 5365–5376 (2019); DOI: 10.2514/1.J057921.

    Article  ADS  Google Scholar 

  16. D. Baccarella, Q. Liu, G. S. Lee, and T. Lee, “Flow Chocking Induced by Combustion and Mass Injection in a Circular Model Scramjet at Mach 4.5," AIAA Paper No. 2020-1611 (2020); DOI: 10.2514/6.2020-1611.c1.

  17. D. Baccarella, Q. Liu, B. McGann, et al., “Isolator-Combustor Interactions in a Circular Model Scramjet with Thermal and Non-Thermal Choking-Induced Unstart," J. Fluid Mech. 917, Article number A38 (2021); DOI: 10.1017/jfm.2021.238.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. J. Laurence, S. Karl, J. Martinez Schramm, and K. Hannemann, “Transient Fluid-Combustion Phenomena in a Model Scramjet," J. Fluid Mech. 722, 85–120 (2013); DOI: 10.1017/jfm.2013.56.

    Article  ADS  MATH  Google Scholar 

  19. S. J. Laurence, D. Lieber, J. M. Schramm, et al., “‘Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor. Part I: Shock-Tunnel Experiments," Combust. Flame 162 (4), 921–931 (2015); DOI: 10.1016/j.combustflame.2014.09.016.

    Article  Google Scholar 

  20. J. Larsson, S. Laurence, I. Bermejo-Moreno, et al., “Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor. Part II: Large Eddy Simulations," Combust. Flame 162 (4), 907–920 (2015); DOI: 10.1016/j.combustflame.2014.09.017.

    Article  Google Scholar 

  21. S. Im, H. Do, and M. A. Cappelli, “The Manipulation of an Unstarting Supersonic Flow by Plasma Actuator," J. Phys. D: Appl. Phys. 45, 485202 (2012); DOI: 10.1088/0022-3727/45/48/485202.

    Article  Google Scholar 

  22. I. A. Bedarev and N. N. Fedorova, “Computation of Gas-Dynamic Parameters and Heat Transfer in Supersonic Turbulent Separated Flows near Backward-Facing Steps," Prikl. Mekh. Tekh. Fiz. 42 (1), 56–64 (2001) [J. Appl. Mech. Tech. Phys. 42 (1), 49–56 (2001)].

    Article  ADS  MATH  Google Scholar 

  23. I. A. Bedarev and N. N. Fedorova, “Structure of Supersonic Turbulent Flows in the Vicinity of Inclined Backward-Facing Steps," Prikl. Mekh. Tekh. Fiz. 47 (6), 48–58 (2006) [J. Appl. Mech. Tech. Phys. 47 (6), 812–820 (2006)].

    Article  ADS  MATH  Google Scholar 

  24. I. A. Bedarev, M. A. Goldfeld, Yu. V. Zakharova, and N. N. Fedorova, “Investigation of Temperature Fields in Supersonic Flow behind a Backward-Facing Step," Teplofiz. Aeromekh. 16 (3), 375–386 (2009) [Thermophys. Aeromech. 16 (3), 355–366 (2009)].

    Article  ADS  Google Scholar 

  25. N. N. Fedorova and M. A. Goldfeld, “Effects of the Dynamic Pressure and Molecular Weight of the Gas on Mixing in the Case of Jet Injection into a Transverse Supersonic Flow," Pisma Zh. Tekh. Fiz. 47 (2), 3–8 (2021).

  26. M. A. Goldfeld, Yu. V. Zakharova, A. V. Fedorov, and N. N. Fedorova, “Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization," Fiz. Goreniya Vzryva 54 (6), 3–16 (2018) [Combust., Expl., Shock Waves 54 (6), 629–641 (2018); DOI: 10.1134/S0010508218060011].

    Article  Google Scholar 

  27. N. N. Fedorova, O. S. Vankova, and M. A. Goldfeld, “Unsteady Regimes of Hydrogen Ignition and Flame Stabilization in a Channel," Fiz. Goreniya Vzryva 58 (2), 3–11 (2022) [Combust., Expl., Shock Waves 58 (2), 127–134 (2022); DOI: 10.1134/S0010508222020010].

    Article  Google Scholar 

  28. N. N. Fedorova, M. A. Goldfeld, and V. V. Pickalov, “Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. I. Experiment," Fiz. Goreniya Vzryva 58 (5), 33–43 (2022) [Combust., Expl., Shock Waves 58 (5), 536–545 (2022); DOI: 10.1134/S0010508222050057].

    Article  Google Scholar 

  29. N. N. Fedorova, M. A. Goldfeld, and V. V. Pickalov, “Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. II. Numerical Simulation," Fiz. Goreniya Vzryva 58 (5), 44–53 (2022) [Combust., Expl., Shock Waves 58 (5), 546–554 (2022); DOI: 10.1134/S0010508222050069].

    Article  Google Scholar 

  30. M. A. Goldfeld, “Processes of Self-Ignition and Flame Stabilization with Transverse Hydrogen Fuel Injection into a Supersonic Combustion Chamber," Teplofiz. Aeromekh. 27 (4), 601–613 (2020) [Thermophys. Aeromech. 27 (4), 573–584 (2020)].

    Article  ADS  Google Scholar 

  31. M. Goldfeld, “The Heat Flux Research in Hydrogen Supersonic Combustor at Mach Number of 4," Int. J. Hydrogen Energy 46 (24), 13365–13376 (2021); DOI: 10.1016/j.ijhydene.2021.01.093.

    Article  Google Scholar 

  32. M. Goldfeld, “Heat Modes of the Supersonic Combustion Chamber at High Entrance Mach Numbers," AIP Conf. Proc. 2351 (1), 040024 (2021); DOI: 10.1063/5.0052415.

  33. Ansys CFD Academic Research, Custom number 610336.

  34. U. Maas and J. Warnatz, “Ignition Processes in Hydrogen–Oxygen Mixtures," Combust. Flame 74 (1), 53–69 (1988); DOI: 10.1016/0010-2180(88)90086-7.

    Article  Google Scholar 

  35. O. S. Vankova and N. N. Fedorova, “Modeling of Ignition and Combustion of a Coflowing Hydrogen Jet in a Supersonic Air Flow," Fiz. Goreniya Vzryva 57 (4), 18–28 (2021) [Combust., Expl., Shock Waves 57 (4), 398–407 (2021); DOI: 10.1134/S001050822104002X].

    Article  Google Scholar 

  36. Ansys Fluent Theory Guide, Release 2022 R1, Section 26.3.1.18.

  37. S.-H. Lee, “Characteristics of Dual Transverse Injection in Scramjet Combustor. Part 1: Mixing," J. Propul. Power 22 (5), 1012–1019 (2006); DOI: 10.2514/1.14180.

    Article  Google Scholar 

  38. P. Gerlinger, P. Stoll, M. Kindler, et al., “Numerical Investigation of Mixing and Combustion Enhancement in Supersonic Combustors by Strut Induced Streamwise Vorticity," Aerosp. Sci. Technol. 12 (2), 159–168 (2008); DOI: 10.1016/j.ast.2007.04.003.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fedorova.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 12-24. https://doi.org/10.15372/FGV20230402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, N.N. Numerical Simulation of Thermal Choking of a Channel during Combustion of a Hydrogen–Air Mixture in a Supersonic Flow. Combust Explos Shock Waves 59, 402–414 (2023). https://doi.org/10.1134/S0010508223040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040020

Keywords

Navigation