Skip to main content
Log in

Analysis and Modeling of the Behind-Plate Overpressure Caused by a Polytetrafluoroethylene/Aluminum/Tungsten Reactive Fragment

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

In this paper, the behind-plate overpressure caused by a polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive fragment is theoretically and experimentally analyzed. The theoretical energy of the PTFE/Al/W reactive materials is calculated by analyzing the chemical reaction of these compositions. Furthermore, based on the one-dimensional shock wave theory and the energy release behavior of the reactive fragment, an analytical model of the behind-plate overpressure is developed. By using binary quadratic polynomial fitting, a polynomial expression of the mass loss of the initiated reactive materials is derived based on the experimental data. The results show that the theoretical analysis model can be used for estimating the overpressure when a reactive fragment impacts an aluminum plate within experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. B. Q. Geng, H. F. Wang, Q. B. Yu, et al., “Bulk Density Homogenization and Impact Initiation Characteristics of Porous PTFE/Al/W Reactive Materials," Mater. 13 (10), 2271 (2020); DOI: 10.3390/ma13102271.

    Article  ADS  Google Scholar 

  2. J. Nable, A. Mercado, and A. Sherman, “Novel Energetic Composite Materials," MRS Online Proc. Library 896, 103 (2005); DOI: 10.1557/PROC-0896-H01-03.

    Article  Google Scholar 

  3. H. Martinez, Z. Y. Zheng, and W. R. Dolbier, “Energetic Materials Containing Fluorine. Design, Synthesis and Testing of Furazan-Containing Energetic Materials Bearing a Pentafluorosulfanyl Group," J. Fluorine Chem. 143, 112–122 (2012); DOI: 10.1016/j.jfluchem.2012.03.010.

  4. “Reactive Fragment Warhead for Enhanced Neutralization of Mortar, Rocket, & Missile Threats" DE Technologies Inc., ONR-SRIR: N04-903 (2006); http://www.detk.com.

  5. T. Vine, J. Stubberfield, D. Jobson, et al., “Penetration and Ignition Performance of Reactive Fragments," in 29th Int. Symp. on Ballistics, Edinburgh, Scotland, UK, May 9–13, 2016.

  6. B. Sorensen, “High-Velocity Impact of Encased Al/PTFE Projectiles on Structural Aluminum Armor," Procedia Eng. 103, 569–576 (2015); DOI: 10.1016/j.proeng.2015.04.074.

    Article  Google Scholar 

  7. M. N. Raftenberg, W. Mock (Jr.), and G. C. Kirby, “Modeling the Impact Deformation of Rods of a Pressed PTFE/Al Composite Mixture," Int. J. Impact Eng. 35 (12), 1735–1744 (2008); DOI: 10.1016/j.ijimpeng.2008.07.041.

    Article  Google Scholar 

  8. W. Mock (Jr.) and W. H. Holt, “Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders," AIP Conf. Proc. 845 (1), 1097–1100 (2006); DOI: 10.1063/1.2263514.

  9. W. Mock (Jr.) and T. Drotar, “Effect of Aluminum Particle Size on the Impact Initiation of Pressed PTFE/Al Composite Rods," AIP Conf. Proc. 955 (1), 971–974 (2007); DOI: 10.1063/1.2833292.

  10. R. J. Lee, W. Mock (Jr.), J. R. Carney, et al., “Reactive Materials Studies," AIP Conf. Proc. 845 (1), 169–174 (2006); DOI: 10.1063/1.2263291.

  11. K. L. Olney, P. H. Chiu, C. W. Lee, et al., “Role of Material Properties and Mesostructure on Dynamic Deformation and Shear Instability in Al–W Granular Composites," J. Appl. Phys. 110 (11), 114908 (2011); DOI: 10.1063/1.3665644.

    Article  ADS  Google Scholar 

  12. K. L. Olney, V. F. Nesterenko, and D. J. Benson, “Mechanisms of Fragmentation of Aluminum–Tungsten Granular Composites under Dynamic Loading," Appl. Phys. Lett. 100 (19), 191910 (2012); DOI: 10.1063/1.4711768.

    Article  ADS  Google Scholar 

  13. J. P. Hooper, “Impact Fragmentation of Aluminum Reactive Materials," J. Appl. Phys. 112 (14), 043508 (2012); DOI: 10.1063/1.4746788.

    Article  ADS  Google Scholar 

  14. R. G. Ames, “Energy Release Characteristics of Impact-Initiated Energetic Materials," MRS Online Proc. Library 896, 308 (2006); DOI: 10.1557/PROC-0896-H03-08.

    Article  Google Scholar 

  15. R. G. Ames, “Vented Chamber Calorimetry for Impact-Initiated Energetic Materials," in 43rd AIAA Aerospace Sci. Meeting and Exhibit, Reno, January 10–13, 2005, AIAA Paper No. 2005–279.

  16. H. F. Wang, Y. F. Zheng, Q. B. Yu, et al., “Impact-Induced Initiation and Energy Release Behavior of Reactive Materials," J. Appl. Phys. 110 (7), 074904 (2011); DOI: 10.1063/1.3644974.

    Article  ADS  Google Scholar 

  17. F. Y. Xu, B. Q. Geng, X. P. Zhang, et al., “Experimental Study on Behind-Plate Overpressure Effect by Reactive Material Projectile," Propell., Explos., Pyrotech. 42 (2), 192–197 (2017); DOI: 10.1002/prep.201600086.

    Article  Google Scholar 

  18. X. M. Cai, W. Zhang, W. B. Xie, et al., “Initiation and Energy Release Characteristics Studies on Polymer Bonded Explosive Materials under High Speed Impact," Mater. Des. 68, 18–23 (2015); DOI: 10.1016/j.matdes.2014.12.004.

    Article  Google Scholar 

  19. J. Tsai and C. T. Sun, “Constitutive Model for High Strain Rate Response of Polymeric Composites," Compos. Sci. Technol. 62 (10–12), 1289–1297 (2002); DOI: 10.1016/S0266-3538(02)00064-7.

    Article  ADS  Google Scholar 

  20. L. Wang, J. X. Liu, S. K. Li, and X. B. Zhang, “Investigation on Reaction Energy, Mechanical Behavior and Impact Insensitivity of W–PTFE–Al Composites with Different W Percentage," Mater. Des. 92, 397–404 (2016); DOI: 10.1016/j.matdes.2015.12.045.

    Article  Google Scholar 

  21. X. F. Zhang, J. Zhang, L. Qiao, et al., “Experimental Study of the Compression Properties of Al/W/PTFE Granular Composites under Elevated Strain Rates," Mater. Sci. Eng. A 581, 48–55 (2013); DOI: 10.1016/j.msea.2013.05.063.

    Article  Google Scholar 

  22. Y. F. Zheng. “Research on Enhanced Lethality Effects and Mechanisms of Reactive Materials," Ph.D. Thesis (Beijing Inst. of Technol., China, 2012).

  23. H. F. Wang et al., “Experimental Research on Igniting the Aviation Kerosene by Reactive Fragment," Acta Armament. 33 (9), 1148–1152 (2012).

    Google Scholar 

  24. Physical Chemistry (Higher Ed. Press, Tianjin Univ., 2011).

  25. F. Y. Xu, Y. F. Zheng, Q. B. Yu, et al., “Experimental Study on Penetration Behavior of Reactive Material Projectile Impacting Aluminum Plate," Int. J. Impact Eng. 95, 125–132 (2016); DOI: 10.1016/j.ijimpeng.2016.05.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Y. Xu.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 3, pp. 133-140. https://doi.org/10.15372/FGV20230313.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F.Y., Kang, J. & Wang, H.F. Analysis and Modeling of the Behind-Plate Overpressure Caused by a Polytetrafluoroethylene/Aluminum/Tungsten Reactive Fragment. Combust Explos Shock Waves 59, 375–381 (2023). https://doi.org/10.1134/S0010508223030139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223030139

Keywords

Navigation