Skip to main content
Log in

Optical Spectroscopic Study of Diffusion Combustion of a Suspension of Boron Nanoparticles in Isopropanol in Oxygen Coflow

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The stationary diffusion combustion of a boron nanoparticle suspension in isopropanol in oxygen coflow and the pulsed laser photolytic initiation of this combustion were studied. Experiments were carried out using a number of spectroscopic methods. Coherent anti-Stokes Raman scattering spectroscopy was used to determine the transverse distributions and concentrations of oxygen molecules diffusing into the fuel jet and the flame temperature variation at different distances from the edge of the burner nozzle due to the addition of boron nanoparticles into the fuel. The dimensions of the region of laser ignition of the combustible mixture were determined by laser-induced fluorescence spectroscopy of electronically excited O\(_{2}^*\) molecules. Chemiluminescence spectroscopy of intermediate products of gas-phase reactions (OH* and BO\(_{2}^*\) radicals) from the ignition region made it possible to characterize the spatio-temporal dynamics of this process. The variations in the temperature field and ignition dynamics due to the addition of boron nanoparticles are explained based on an analysis of the obtained data. In particular, it is assumed that the characteristic rise in temperature in the region of the flame front is primarily due to an increase in the burning rate of the fuel with nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. A. M. Savel’ev, B. I. Brainin, and A. M. Starik, “Analysis of the Energetic Efficiency of Using Combined Hydrocarbon Fuels with Non-Metallic and Metallic Nanocomponents in Jet Engines," in Nonequilibrium Physicochemical Processes in Gasous Flows and Novel Combustion Concepts, Ed. by A. M. Starik (Torus Press, Moscow, 2011), pp. 669–695 [in Russian].

  2. J. S. Basha and R. B. Anand, “Role of Nanoadditive Blended Biodiesel Emulsion Fuel on the Working Characteristics of a Diesel Engine," J. Renew. Sustain. Energy 3 (2), 023106 (2011); DOI: 10.1063/1.3575169.

    Article  Google Scholar 

  3. E. R. Zvereva, R. V. Khabibullina, A. O. Makarova, G. R. Akhmetvalieva, F. I. Burganova, D. V. Ermolaev, and O. S. Zueva, “Modification of the Rheological Properties of Heavy Boiler Fuel by Adding Carbon Nanotubes and Dehydrated Carbonate Sludge," Petroleum Chem. 59 (1), 106–110 (2019); DOI: 10.1134/S0965544119010158.

    Article  Google Scholar 

  4. M. Mehregan and M. Moghiman, “Effect of Aluminum Nanoparticles on Combustion Characteristics and Pollutants Emission of Liquid Fuels—A Numerical Study," Fuel 119 (1), 57–61 (2014); DOI: 10.1016/j.fuel.2013.11.016.

    Article  Google Scholar 

  5. I. Javed. S. W. Baek, and K. Waheed, “Autoignition and Combustion Characteristics of Kerosene Droplets with Dilute Concentrations of Aluminum Nanoparticles at Elevated Temperatures," Combust. Flame 162 (3), 774–787 (2015); DOI: 10.1016/j.combustflame.2014.08.018.

    Article  Google Scholar 

  6. J. Yoon and S. Baek, “Droplet Evaporation Behavior of Kerosene/Nano-Aluminum Fuels at High Pressure Environment," Int. J. Mater. Mech. Eng. 4, 44–49 (2015); DOI: 10.14355/ijmme.2015.04.007.

    Article  Google Scholar 

  7. Y. Luo, X. Xu, J. Zou, and X. Zhang, “Combustion of JP-10-Based Slurry with Nanosized Aluminum Additives," J. Propul. Power 32 (5), 1–11 (2016); DOI: 10.2514/1.B35969.

    Article  Google Scholar 

  8. B. Palaszewski, J. Jurns, K. Breisacher, and K. Kearns, “Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine," in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit., 2004, AIAA 2004-4191 (2004); DOI: 10.2514/6.2004-4191.

  9. C. Allen, G. Mittal, C. Sung, E. Toulson, and T. Lee, “An Aerosol Rapid Compression Machine for Studying Energetic-Nanoparticle-Enhanced Combustion of Liquid Fuels," Proc. Combust. Inst. 33 (2), 3367–3374 (2011); DOI: 10.1016/j.proci.2010.06.007.

    Article  Google Scholar 

  10. D. Jackson, D. Davidson, and R. Hanson, “Application of an Aerosol Shock Tube for the Kinetic Studies of n-Dodecane/Nano-Aluminum Slurries," in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. 2008, AIAA 2008-4767 (2008); DOI: 10.2514/6.2008-4767.

  11. V. V. Smirnov, S. A. Kostritsa, V. D. Kobtsev, N. S. Titova, and A. M. Starik, “Experimental Study of Combustion of Composite Fuel Comprising n-Decane and Aluminum Nanoparticles," Combust. Flame 162 (10), 3554–3561 (2015); DOI: 10.1016/j.combustflame.2015.06.011.

    Article  Google Scholar 

  12. A. M. Savel’ev, V. V. Smirnov, N. S. Titova, and D. A. Yagodnikov, “Diffusion Combustion of n-Decane with Unpassivated Aluminum Nanoparticles Additives: Analysis of Mechanism and Numerical Simulation," Combust. Flame 236 (5), 111761 (2022); DOI: 10.1016/j.combustflame.2021.111761.

    Article  Google Scholar 

  13. Y. Gan, Y. Lim, and L. Qiao, “Combustion of Nanofluid Fuels with the Addition of Boron and Iron Particles at Dilute and Dense Concentrations," Combust. Flame 159 (4), 1732–1740 (2012); DOI: 10.1016/j.combustflame.2011.12.008.

    Article  Google Scholar 

  14. P. K. Ojha, R. Maji, and S. Karmakar, “Effect of Crystallinity on Droplet Regression and Disruptive Burning Characteristics of Nanofuel Droplets Containing Amorphous and Crystalline Boron Nanoparticles," Combust. Flame 188, 412–427 (2018); DOI: 10.1016/j.combustflame.2017.10.005.

    Article  Google Scholar 

  15. A. Maček and J. M. Semple, “Combustion of Boron Particles at Atmospheric Pressure," Combust. Sci. Technol. 1 (3), 181–191 (1969); DOI: 10.1080/00102206908952199.

    Article  Google Scholar 

  16. B. N. Bakulin, N. F. Dubovkin, B. N. Kotova, B. A. Sorokin, V. P. Frantskevich, and L. S. Yanovsky, Energetic Fuels for Aviation and Rocket Engines, Ed. by L. S. Yanovsky (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  17. S. Karmakar, S. Acharya, and K. M. Dooley, “Ignition and Combustion of Boron Nanoparticles in Ethanol Spray Flame," J. Propul. Power 28 (4), 707–718 (2012); DOI: 10.2514/1.B34358.

    Article  Google Scholar 

  18. M. R. Weismiller, Z. J. Huba, S. G. Tuttle, A. Epshteyn, and B. T. Fisher, “Combustion Characteristics of High Energy Ti–Al–B Nanopowders in a Decane Spray Flame," Combust. Flame 176, 361–369; DOI: 10.1016/j.combustflame.2016.10.025.

    Article  Google Scholar 

  19. G. Young, K. Sullivan, M. R. Zachariah, and K. Yu, “Combustion Characteristics of Boron Nanoparticles," Combust. Flame 156 (2), 322–333 (2009); DOI: 10.1016/j.combustflame.2008.10.007.

    Article  Google Scholar 

  20. E. V. Barmina, M. I. Zhilnikova, K. O. Aiyyzhy, V. D. Kobtsev, D. N. Kozlov, S. A. Kostritsa, S. N. Orlov, A. M. Savel’ev, V. V. Smirnov, N. S. Titova, and G. A. Shafeev, “Experimental Study of the Diffusion Combustion of Suspension of Boron Nanoparticles in Isopropanol," Dokl. Akad. Nauk 502 (1), 10–14 (2022) [Dokl. Phys. 67, 39–43 (2022); https://doi.org/10.1134/S102833582202001X].

    Article  ADS  Google Scholar 

  21. V. D. Kobtsev, D. N. Kozlov, S. A. Kostritsa, V. V. Smirnov, O. M. Stel’makh, and A. A. Tumanov, “Laser Spectrometric Measuring System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels," Opt. Spectrosk. 120 (3), 519–527 (2016); DOI: 10.1134/S0030400X16020132 [Opt. Spectrosc. 120, 492–499 (2016); https:// doi.org/10.1134/S0030400X16020132].

    Article  ADS  Google Scholar 

  22. V. D. Kobtsev, S. A. Kostritsa, A. V. Pelevkin, V. V. Smirnov, A. M. Starik, N. S. Titova, S. A. Torokhov, K. A. Vereshchagin, and S. Y. Volkov, “Ignition and Early Stage Combustion of H2–O2 Mixture upon the Photodissociation of O2 Molecules by UV Laser Radiation: Experimental and Numerical Study," Combust. Flame 200, 32–43 (2019); DOI: 10.1016/j.combustflame.2018.10.038.

    Article  Google Scholar 

  23. V. D. Kobtsev, S. A. Kostritsa, A. V. Pelevkin, V. V. Smirnov, N. S. Titova, S. A. Torokhov, and S. Y. Volkov, “Photodissociation As a Method to Increase the Ignition Volume," Combust. Flame 244, 112222 (2022); DOI: 10.1016/j.combustflame.2022.112222.

    Article  Google Scholar 

  24. S. Masoumi, E. Houshfar, and M. Ashjaee, “Experimental Investigation of the Effects of Passivated Aluminum Nanoparticles on Butane Flame Structure," Exp. Therm. Fluid Sci. 100, 33–48 (2019); DOI: 10.1016/j.expthermflusci.2018.08.025.

    Article  Google Scholar 

  25. R. C. Brown, C. E. Kolb, H. Rabitz, S. Y. Cho, R. A. Yetter, and F. L. Dryer, “Kinetic Model of Liquid B2O3 Gasification in a Hydrocarbon Combustion Environment: I. Heterogeneous Surface Reactions," Int. J. Chem. Kinet. 23 (11), 957–970 (1991); DOI: 10.1002/kin.550231102.

    Article  Google Scholar 

  26. R. C. Brown, C. E. Kolb, S. Y. Cho, R. A. Yetter, F. L. Dryer, and H. Rabitz, “Kinetic Model for Hydrocarbon-Assisted Particulate Boron Combustion," Int. J. Chem. Kinet. 26 (3), 319–332 (1994); DOI: 10.1002/kin.550260302.

    Article  Google Scholar 

  27. X. Man, C. Tang, J. Zhang, Y. Zhang, L. Pan, Z. Huang, and C. K. Law, “An Experimental and Kinetic Modeling Study of n-Propanol and i-Propanol Ignition at High Temperatures," Combust. Flame 161 (3), 644–656 (2014); DOI: 10.1016/j.combustflame.2013.08.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kostritsa.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 2, pp. 49-62. https://doi.org/10.15372/FGV20230207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiyyzhy, K.O., Barmina, E.V., Kobtsev, V.D. et al. Optical Spectroscopic Study of Diffusion Combustion of a Suspension of Boron Nanoparticles in Isopropanol in Oxygen Coflow. Combust Explos Shock Waves 59, 167–179 (2023). https://doi.org/10.1134/S0010508223020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223020077

Keywords

Navigation