Skip to main content
Log in

Flame Spread over a Liquid Fuel Film in an Oxygen-Enriched Environment

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Flame spread over a thin film of various liquid fuels with an flash point below ambient temperature has been studied experimentally using thin copper and thick glass substrates in environments with different oxygen concentrations. It has been shown that with an increase in the oxygen concentration, the flame speed increases faster than the normal speed of the corresponding homogeneous stoichiometric mixture. When the proportion of oxygen in the mixture with nitrogen was changes from 0.21 (air) to 1, the flame speed changes from 0.02 to 2.4 m/s. At flame speeds above 0.3 m/s, the thermal thinness condition is not satisfied even for thin copper substrates. The flame speed ceases to depend on the substrate properties and the fuel layer thickness and becomes dependent only on the fuel properties. In this speed range, the flame speed increases linearly with increasing thermal effect of a unit volume of the stoichiometric mixture of fuel vapor with oxidizer and decreases with increasing difference between the temperature \(T_{st}\) of formation of the stoichiometric composition under equilibrium conditions and the ambient temperature \(T_{0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. I. Glassman and F. L. Dryer, “Flame Spreading across Liquid Fuels," Fire Safety. J. 3 (2), 123–138 (1981); DOI: 10.1016/0379-7112(81)90038-2.

    Article  Google Scholar 

  2. H. D. Ross, “Ignition of and Flame Spread over Laboratory-Scale Pools of Pure Liquid Fuels," Prog. Energy Combust. Sci. 20 (1), 17–63 (1994); DOI: 10.1016/0360-1285(94)90005-1.

    Article  Google Scholar 

  3. D. N. Schiller, H. D. Ross, and W. A. Sirignano, “Computational Analysis of Flame Spread across Alcohol Pools," Combust. Sci. Technol. 118 (4–6), 203–255 (1996); DOI: 10.1080/00102209608951980.

    Article  Google Scholar 

  4. J. Guo, S.-X. Lu, and C.-J. Wang, “Effect of Fuel Depth on Flame Spread over Aviation Kerosene," J. Fire Sci. 32 (1), 43–51 (2014); DOI: 10.1177/0734904113491705.

    Article  Google Scholar 

  5. M. H. Li, S. X. Lu, J. Guo, X. J. Wu, and K. L. Tsui, “Effects of Pool Dimension on Flame Spread of Aviation Kerosene Coating on a Metal Substrate," Int. J. Heat Mass Transfer. 84, 54–60 (2015); DOI: 10.1016/j.ijheatmasstransfer.2015.01.005.

    Article  Google Scholar 

  6. M. H. Li, C.-J. Wang, H. Sun, H. Liu, S.-L. Yang, and A. Zhang, “Heat and Mass Transfer of Flame Spread over Jet Fuel at Sub-Flash Temperature," Exp. Therm. Fluid Sci. 89, 276–283 (2017); DOI: 10.1016/j.expthermflusci.2017.08.022.

    Article  Google Scholar 

  7. M. Li, L. Zhou, Z. Shu, P. Hu, C. Wang, and C. Ding, “Gas–Liquid Hydrodynamics and Vortex Motion of Flame Spread over Jet Fuel in Longitudinal Air Stream," Exp. Therm. Fluid Sci. 134, 110601 (2022); DOI: 10.1016/j.expthermflusci.2022.110601.

    Article  Google Scholar 

  8. D. Drysdale, An Introduction to Fire Dynamics (Wiley, Chichester, 1985).

    Google Scholar 

  9. A. C. McIntosh, M. Bains, W. Crocombe, and G. F. Griffiths, “Autoignition of Combustible Fluids in Porous Insulation Materials," Combust. Flame 99 (3/4), 541–550 (1991); DOI: 10.1016/0010-2180(94)90047-7.

    Article  Google Scholar 

  10. I. I. Strizhevskii and V. F. Zakaznov, Industrial Flame Arresters (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  11. G. A. Lyamin and A. V. Pinaev, “Heterogeneous Detonation (Gas–Film) in a Porous Medium. Region of Existence and Limits," Fiz. Goreniya Vzryva 28 (5), 102–108 (1992) [Combust., Expl., Shock Waves 28, 544–550 (1992); https://doi.org/10.1007/BF00755732].

    Article  Google Scholar 

  12. V. S. Babkin, A. A. Korzhavin, and V. A. Bunev, “Propagation of Premixed Gaseous Explosion Flames in Porous Media," Combust. Flame 87 (2), 182–190 (1991); DOI: 10.1016/0010-2180(91)90168-B.

    Article  Google Scholar 

  13. A. A. Korzhavin, V. A. Bunev, and V. S. Babkin, “Diffusion Flame Propagation in an Inert Porous Medium Wetted with Fuel," in Combustion Detonation, Shock Waves, Proc. of the Zel’dovich Memorial Int. Conf. on Combustion, Ed. by S. M. Frolov (Moscow, 1994), Vol. 2, pp. 198–200.

  14. A. A. Korzhavin, V. A. Bunev, and V. S. Babkin, “Flame Propagation in Porous Media Wetted with Fuel," Fiz. Goreniya Vzryva 33 (3), 76–85 (1997) [Combust., Expl., Shock Waves 33 (3), 306–314 (1997); https://doi.org/10.1007/BF02671870].

    Article  Google Scholar 

  15. A. A. Korzhavin, V. A. Bunev, D. M. Gordienko, and V. S. Babkin, “Behavior of Flames Propagating over Liquid Films on Metallic Substrates," Fiz. Goreniya Vzryva 34 (3), 15–18 (1998) [Combust., Expl., Shock Waves 34 (3), 260–263 (1998); https://doi.org/10.1007/BF02672715].

    Article  Google Scholar 

  16. J. N. De Ris, “Spread of a Laminar Diffusion Flame," Symp. (Int.) Combust. 12 (1), 241–252 (1969); DOI: 10.1016/S0082-0784(69)80407-8.

    Article  Google Scholar 

  17. A. A. Korzhavin, V. A. Bunev, I. G. Namyatov, S. S. Minaev, and V. S. Babkin, “Combustion Regimes of Liquid Fuel Film on Thermally Thin Metallic Substrate," in Proc. of the 3rd Int. Seminar on Fire and Explosion Hazards (Univ. of Central Lancashire, Preston, 2001), pp. 379–388.

  18. A. A. Korzhavin, I. G. Namyatov, V. A. Bunev, and V. S. Babkin, “Interaction of Two Diffusion Flames Spreading along a Metal Substrate Wetted with Different Fuels," Fiz. Goreniya Vzryva 39 (6), 28–37 (2003) [Combust., Expl., Shock Waves 39 (6), 635–643 (2003); https://doi.org/10.1023/B:CESW.0000007675.59169.ee].

    Article  Google Scholar 

  19. A. A. Korzhavin, V. A. Bunev, I. G. Namyatov, and V. S. Babkin, “Flame Spread over a Liquid Fuel Films on Metallic Substrates," Fiz. Goreniya Vzryva 36 (3), 25–30 (2000) [Combust., Expl., Shock Waves 36 (3), 304–309 (2000); https://doi.org/10.1007/BF02699381].

    Article  Google Scholar 

  20. I. G. Namyatov, S. S. Minaev, V. S. Babkin, V. A. Bunev, and A. A. Korzhavin, “Diffusion Combustion of a Liquid Fuel Film on a Metal Substrate," Fiz. Goreniya Vzryva 36 (5), 12–21 (2000) [Combust., Expl., Shock Waves 36 (5), 562–570 (2000); https://doi.org/10.1007/BF02699518].

    Article  Google Scholar 

  21. A. A. Korzhavin, N. A. Kakutkina, and I. G. Namyatov, “Flame Spread over Fuel Films in Opposed Gas Flow," Fiz. Goreniya Vzryva 46 (3), 37–43(2010) [Combust., Expl., Shock Waves 46 (3), 73–278 (2010); https://doi.org/10.1007/s10573-010-0038-0].

    Article  Google Scholar 

  22. A. A. Korzhavin, V. A. Bunev, V. S. Babkin, and I. G. Namyatov, “Effect of Initial Temperature on the Velocity of Flame Spread over a Fuel Film on a Metal Substrate," Fiz. Goreniya Vzryva 48 (5), 87–96 (2012) [Combust., Expl., Shock Waves 48 (5), 570–578 (2012); https://doi.org/10.1134/S0010508212050085].

    Article  Google Scholar 

  23. I. G. Namyatov and A. A. Korzhavin, “Flame Spread Over Film Spread of a Liquid Fuel Film on a Low-Thermal-Conductivity Substrate," Fiz. Goreniya Vzryva 57 (4), 29–37 (2021) [Combust., Expl., Shock Waves 57 (4), 408–414 (2021); https://doi.org/10.1134/S0010508221040031].

    Article  Google Scholar 

  24. V. V. Zamashchikov, A. A. Korzhavin, and E. A. Chinnov, “Combustion of a Liquid Fuel in a Rectangular Channel," Fiz. Goreniya Vzryva 50 (4), 15–21 (2014) [Combust., Expl., Shock Waves 50 (4) 381–386 (2014); https://doi.org/10.1134/S0010508214040030].

    Article  Google Scholar 

  25. V. V. Zamashchikov, A. A. Korzhavin, E. A. Chinnov, “Combustion of Liquid Fuel in the Flat Micro- and Minichannels," Int. J. Heat Mass Transfer. 102, 470–478 (2016); DOI: 10.1016/j.ijheatmasstransfer.2016.06.043.

    Article  Google Scholar 

  26. C. K. Law, Combustion Physics (Cambridge Univ. Press, New York, 2006).

    Book  Google Scholar 

  27. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “Premix: A Fortran Computer Program for Modeling Steady Laminar One-Dimensional Premixed Flames," Sandia Nat. Lab. Report No. SAND 85-8240 (1985).

  28. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics," Sandia Nat. Lab. Report No. SAND 89-8009B (1989).

  29. S. M. Sarathy, S. Vranckx, K. Yasunaga, M. Mehl, P. Oßwald., W. K. Metcalfe, C. K. Westbrook, W. J. Pitz, K. Kohse-Höinghaus, R. X. Fernandes, and H. J. Curran. “A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers," Combust. Flame 159 (6), 2028–2055 (2012); DOI: 10.1016/j.combustflame.2011.12.017.

    Article  Google Scholar 

  30. V. V. Zamashchikov, “Mechanism of Flame Propagation above the Surface of a Flammable Liquid," Fiz. Goreniya Vzryva 56 (6), 12–16 (2020) [Combust., Expl., Shock Waves 56 (6), 629–633 (2020); https://doi.org/10.1134/S0010508220060027].

    Article  Google Scholar 

  31. A. N. Baratov, A. Ya. Korolchenko, G. N. Kravchuk, et al., Explosion Hazard of Substances and Materials and Means of Fire Suppression: Handbook (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Korzhavin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 1, pp. 43-53. https://doi.org/10.15372/FGV20230104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namyatov, I.G., Korzhavin, A.A. Flame Spread over a Liquid Fuel Film in an Oxygen-Enriched Environment. Combust Explos Shock Waves 59, 39–48 (2023). https://doi.org/10.1134/S0010508223010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223010045

Keywords

Navigation