Skip to main content
Log in

Two-Scale Mathematical Model of Combustion of Coal–Methane–Air Gas–Particle Suspension

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents a mathematical model of combustion of a coal dust gas–particle suspension in a methane–air mixture, which takes into account the inhomogeneity of temperature distribution in the particles. The gas–particle suspension state parameters are determined by the model of the dynamics of a two-phase two-velocity reacting gas-dispersed medium. The combustion of coal dust particles is simulated using a local mathematical model of a heterogeneous reaction on the particle surface and particle heating. A solution to local problems of coal dust particle combustion is used determine the heat release rate of the entire set of particles in the heterogeneous reaction of coal dust with oxygen and the heat exchange with gas. Dependences between the combustion front propagation velocity and the mass concentration of coal dust and the volumetric concentration of methane are determined. The estimated combustion front velocity in a methane–air mixture with no coal dust is in good agreement with experimental data. The comparison of calculating the flame velocity in a coal–methane–air mixture using two models (with and with no account for the inhomogeneity of the temperature distribution in the particles) is given. This comparison shows a significant difference in the values of the estimated combustion front velocity of rapidly burning gas–particle suspensions. For slowly burning gas–particle suspensions, this difference decreases. The developed model explains the shift of the maximum flame propagation velocity in the coal–methane–air mixture toward the excess of fuel in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. D. Bradley, M. Lawes, M. J. Scott, and N. Usta, “The Structure of Coal–Air–CH4 Laminar Flames in a Low-Pressure Burner: Cars Measurements and Modeling Studies," Combust. Flame 124 (1/2), 82–105 (2001); DOI: 10.1016/S0010-2180(00)00186-3.

    Article  Google Scholar 

  2. S. R. Rockwell and A. S. Rangwala, “Influence of Coal Dust on Premixed Turbulent Methane–Air Flames," Combust. Flame 160 (3), 635–640 (2013); DOI: 10.1016/j.combustflame.2012.10.025.

    Article  Google Scholar 

  3. D. Torrado, V. Buitrago, P.-A. Glaude, and O. Dufaud, “Explosions of Methane/Air/NanoParticles Mixtures: Comparison between Carbon Black and Inert Particles," Process Saf. Environ. Prot. 110, 77–88 (2017); DOI: 10.1016/j.psep.2017.04.014.

    Article  Google Scholar 

  4. D. Torrado, A. Pinilla, M. Amin, et al., “Numerical Study of the Influence of Particle Reaction and Radiative Heat Transfer on the Flame Velocity of Gas/Nanoparticles Hybrid Mixtures," Process Saf. Environ. Prot. 118, 211–226 (2018); DOI: 10.1016/j.psep.2018.06.042.

    Article  Google Scholar 

  5. A. A. Dement’ev, K. M. Moiseeva, Y. Yu. Krainov, and D. Yu. Paleev, “Comparison of the Results of Modeling the Flame Propagation in a Hybrid Gas Suspension With Experimental Data," Inzh.-Fiz. Zh. 89 (6), 1538–1546 (2016) [J. Eng. Phys. Thermophys. 89, 1514–1521 (2016); https://doi.org/10.1007/s10891-016-1521-6.]

    Article  ADS  Google Scholar 

  6. A. Yu. Krainov and K. M. Moiseeva, “Modeling of the Flame Propagation in Coal–Dust–Methane Air Mixture in an Enclosed Sphere Volume," J. Phys.: Conf. Ser. 754, 052003 (2016); DOI: 10.1088/1742-6596/754/5/052003.

    Article  Google Scholar 

  7. K. M. Moiseeva, A. Yu. Krainov, and A. Kantarbaeva, “Numerical Determination of the Combustion Rate of a Gas Suspension of Coal Dust in a Propane–Air Mixture," J. Phys.: Conf. Ser. 2057, 012065 (2021); DOI: 10.1088/1742-6596/2057/1/01206.

    Article  Google Scholar 

  8. K. G. Shkadinskii and V. V. Barzykin, “Hot-Surface Ignition of Gases with Allowance for Diffusion and Hydrodynamics," Fiz. Goreniya Vzryva 4 (2), 176–181 (1968) [Combust., Expl., Shock Waves 4 (2), 100–104 (1968); https://doi.org/10.1007/BF00783557].

    Article  Google Scholar 

  9. R. K. Eckhoff, Dust Explosions in the Process Industries (Gulf Professional Publ., 2003).

    Book  Google Scholar 

  10. R. I. Nigmatulin, Dynamics of Multiphase Media, Vol. 1 (Moscow, Nauka, 1987; CRC Press, 1990).

    Google Scholar 

  11. B. Lewis and G. Von Elbe, Combustion, Flames, and Explosions of Gases (Technology & Engineering, 1987).

    Google Scholar 

  12. K. Ya. Troshin, A. A. Borisov, A. N. Rakhmetov, et al., “Burning Velocity of Methane–Hydrogen Mixtures at Elevated Pressures and Temperatures," Khim. Fiz. 32 (5), 76–87 (2013) [Russ. J. Phys. Chem. B 7, 290–301 (2013); https://doi.org/10.1134/S1990793113050102].

    Article  Google Scholar 

  13. N. K. Evstigneev and A. Yu. Krainov, “Simulation of Combustion Front Propagation in a Mixture of Combustible Gases and Particles, Taking Into Account Radiant Heat Transfer," Izv. Vyssh. Uchebn. Zaved., Fiz. 50 (9/2), 260–264 (2007).

    Google Scholar 

  14. S. B. Romanchenko, Yu. F. Rudenko, and V. N. Kosterenko, Dust Dynamics in Coal Mines (Gornoe Delo–Kimeriiskii Tsentr, Moscow, 2011) [in Russian].

    Google Scholar 

  15. S. B. Romanchenko, A. N. Timchenko, V. N. Kosterenko, et al., Complex Dedusting (Gornoe Delo–Kimeriiskii Tsentr, Moscow, 2016) [in Russian].

    Google Scholar 

  16. A. Ya. Korol’chenko, Fire and Explosion Safety of Industrial Dust (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  17. M. I. Netseplyaev, A. I. Lyubimova, P. M. Petrukhin, et al., Coal Dust Explosion Control in Mines (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  18. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum Press, 1969).

    Google Scholar 

  19. Handbook on Heat Exchangers (Energoatomizdat, Moscow, 1987) [in Russian].

  20. A. Yu. Krainov, V. A. Poryazov, K. M. Moiseeva, and D. A. Krainov, “Mathematical Model and Numerical Investigation of Combustion Front Propagation Velocity in an Aerosol of an Aluminum Nanopowder Suspension in Kerosene," Inzh.-Fiz. Zh. 94 (3), 774–785 (2021) [J. Eng. Phys. Thermophys. 94, 753–764 (2021); https://doi.org/10.1007/s10891-021-02353-2].

    Article  Google Scholar 

  21. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Book  Google Scholar 

  22. A. N. Kraiko, “On Discontinuity Surfaces in a Medium Devoid of Proper Pressure," Prikl. Mat. Mekh. 43 (3), 500–510 (1979) [J. Appl. Math. Mech.-USS. 43 (3), 539–549 (1979)].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics (Nauka, Novosibirsk, 1981) [in Russian].

    MATH  Google Scholar 

  24. A. Yu. Krainov and K. M. Moiseeva, “Modeling of the Combustion of a Methane–Air Mixture in an Enclosed Spherical Volume," Inzh.-Fiz. Zh. 91 (4), 977–983 (2018) [J. Eng. Phys. Thermophys. 91, 918–924 (2018); https://doi.org/10.1007/s10891-018-1817-9].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Krainov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 1, pp. 32-42. https://doi.org/10.15372/FGV20230103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, K.M., Krainov, A.Y. & Krainov, D.A. Two-Scale Mathematical Model of Combustion of Coal–Methane–Air Gas–Particle Suspension. Combust Explos Shock Waves 59, 29–38 (2023). https://doi.org/10.1134/S0010508223010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223010033

Keywords

Navigation