Skip to main content
Log in

Synthesis of Titanium–Nickel Intermetallic Compounds from Mechanically Activated Powder Mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Synthesis products in mechanically activated powder mixtures of titanium and nickel of three compositions corresponding to double intermetallic compounds are studied. The mixtures are mechanically activated in a planetary mill at a rate of 40 g and a processing duration of 20 min. Synthesis is carried out by a thermal explosion: the mechanically activated mixtures are heated in a sealed reactor in an argon atmosphere at an average heating rate of 70°C /min. The phase composition of the powder products after synthesis and additional annealing is studied by X-ray diffraction analysis, and the results are discussed using the reference data on the temperature dependences of the Gibbs energy of intermetallic compounds. It is revealed that, regardless of the elemental composition of the mixtures, the TiNi3 intermetallic compound, which has the highest negative Gibbs energy, is predominantly formed during synthesis. Therefore, a single-phase target product can be obtained only from a TiNi3 mixture. Thermal explosion products in mixtures of the other two compositions are multiphase. Annealing causes no qualitative changes in the phase composition, and the quantitative changes in the phase content are negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. State Diagrams of Double Metal Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1998) [in Russian].

    Google Scholar 

  2. Titanium Nickelide Alloys with Shape Memory. Part 1. Structure, Phase Transformations, and Properties, Ed. by V. G. Pushin (Ural Branch of the Russian Acad. of Sci., Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  3. F. Gao and H.-M. Wang, “Abrasive Wear Property of Laser Melting/Deposited Ti2Ni/TiNi Intermetallic Alloy," Trans. Nonferrous Met. Soc. China 17 (6), 1358–1362 (2007); DOI: 10.1016/S1003-6326(07)60277-5.

    Article  Google Scholar 

  4. F. Gao and H. M. Wang, “Effect of TiNi in Dry Sliding Wear of Laser Melt Deposited Ti2Ni/TiNi Alloys," Mater. Charact. 59 (9), 1349–1354 (2008); DOI: 10.1016/j.matchar.2008.05.007.

    Article  Google Scholar 

  5. F. Gao and H. M. Wang, “Dry Sliding Wear Property of a Laser Melting/Deposited Ti2Ni/TiNi Intermetallic Alloy," Intermetallics 16 (2), 202–208 (2008); DOI: 10.1016/j.intermet.2007.09.008.

    Article  Google Scholar 

  6. Y. Zhang, X. Cheng, and H. Cai, “Fabrication, Characterization and Tensile Property of a Novel Ti2Ni/TiNi Micro-Laminated Composite," Mater. Des. 92, 486–493 (2016); DOI: 10.1016/j.matdes.2015.12.014.

    Article  Google Scholar 

  7. Y. Zhang, X. Cheng, H. Cai, et al., “The Effects of Thickness of Original Ti Foils on the Microstructures and Mechanical Properties of Ti2Ni/TiNi Laminated Composites," Mater. Sci. Eng. A. 684, 292–302 (2017); DOI: 10.1016/j.msea.2016.12.070.

    Article  Google Scholar 

  8. C. Velmurugan, V. Senthilkumar, K. Biswas, and S. Yadav, “Densification and Microstructural Evolution of Spark Plasma Sintered NiTi Shape Memory Alloy," Adv. Powder Technol. 29 (10), 2456–2462 (2018); DOI: 10.1016/j.apt.2018.06.026.

    Article  Google Scholar 

  9. L. Krone, E. Schüller, M. Bram, et al., “Mechanical Behaviour of NiTi Parts Prepared by Powder Metallurgical Methods," Mater. Sci. Eng. A 378 (1/2), 185–190 (2004); DOI: 10.1016/j.msea.2003.10.345.

    Article  Google Scholar 

  10. K. Khanlari, Q. Shi, K. Hu, et al., “A Study on the Possibility to Process Dense 60NiTi from Elementally Blended Ni and Ti Powders," Vacuum 192, 110500 (2021); DOI: 10.1016/j.vacuum.2021.110500.

    Article  ADS  Google Scholar 

  11. R. Rosa, L. Trombi, A. Casagrande, et al., “On the Versatility and Distinctiveness in the Use of Microwave Energy for the Ignition of Low Exothermic Ni–Ti Intermetallics Combustion Synthesis," Mater. Chem. Phys. 233, 220–229 (2019); DOI: 10.1016/j.matchemphys.2019.05.028.

    Article  Google Scholar 

  12. N. Bertolino, M. Monagheddu, A. Tacca, et al., “Ignition Mechanism in Combustion Synthesis of Ti–Al and Ti–Ni Systems," Intermetallics 11 (1), 41–49 (2003); DOI: 10.1016/S0966-9795(02)00128-0.

    Article  Google Scholar 

  13. P. Novák, L. Mejzlı́ková, A. Michalcová, et al., “Effect of SHS Conditions on Microstructure of NiTi Shape Memory Alloy," Intermetallics 42, 85–91 (2013); DOI: 10.1016/j.intermet.2013.05.015.

    Article  Google Scholar 

  14. M. M. Verdian, K. Raeissi, and M. Salehi, “Electrochemical Impedance Spectroscopy of HVOF-Sprayed NiTi Intermetallic Coatings Deposited on AISI 1045 Steel," J. Alloys Compd. 507 (1), 42–46 (2010); DOI: 10.1016/j.jallcom.2010.07.132.

    Article  Google Scholar 

  15. M. M. Verdian, K. Raeissi, and M. Salehi, “Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution," Corros. Sci. 52 (3), 1052–1059 (2010); DOI: 10.1016/j.corsci.2009.11.034.

    Article  Google Scholar 

  16. D. C. Ren, H. B. Zhang, Y. J. Liu, et al., “Microstructure and Properties of Equiatomic Ti–Ni Alloy Fabricated by Selective Laser Melting," Mater. Sci. Eng. A 771, 138586 (2020); DOI: 10.1016/j.msea.2019.138586.

    Article  Google Scholar 

  17. Q. Shi, Y. Zhang, C. Tan, et al., “Preparation of Ni–Ti Composite Powder Using Radio Frequency Plasma Spheroidization and Its Laser Powder Bed Fusion Densification," Intermetallics 136, 107273 (2021); DOI: 10.1016/j.intermet.2021.107273.

    Article  Google Scholar 

  18. B. Hosni, C. Khaldi, O. ElKedim, et al., “Electrochemical Properties of Ti2Ni Hydrogen Storage Alloy," Int. J. Hydrogen Energy 42 (2), 1420–1428 (2017); DOI: 10.1016/j.ijhydene.2016.04.032.

    Article  Google Scholar 

  19. B. Hosni, X. Li, C. Khaldi, et al., “Structure and Electrochemical Hydrogen Storage Properties of Ti2Ni Alloy Synthesized by Ball Milling," J. Alloys Compd. 615, 119–125 (2014); DOI: 10.1016/j.jallcom.2014.06.152.

    Article  Google Scholar 

  20. X. Zhao, L. Ma, Y. Ding, and X. Shen, “Structural Evolution and Electrochemical Hydrogenation Behavior of Ti2Ni Alloy," Intermetallics 18 (5), 1086–1090 (2010); DOI: 10.1016/j.intermet.2010.02.016.

    Article  Google Scholar 

  21. M. Balcerzak, J. Jakubowicz, T. Kachlicki, and M. Jurczyk, “Hydrogenation Properties of Nanostructured Ti2Ni-Based Alloys and Nanocomposites," J. Power Sources 280, 435–445 (2015); DOI: 10.1016/j.jpowsour.2015.01.135.

    Article  ADS  Google Scholar 

  22. H. T. Takeshita, H. Tanaka, T. Kiyobayashi, et al., “Hydrogenation Characteristics of Ti2Ni and Ti4Ni2X (X = +, N, C)," J. Alloys Compd. 330–332, 517–521 (2002); DOI: 10.1016/S0925-8388(01)01458-X.

    Article  Google Scholar 

  23. H. T. Takeshita, H. Tanaka, N. Kuriyama, et al., “Hydrogenation Characteristics of Ternary Alloys Containing Ti4Ni2X (X = O, N, C)," J. Alloys Compdn. 311 (2), 188–193 (2000); DOI: 10.1016/S0925-8388(00)01118-X.

    Article  Google Scholar 

  24. N. Z. Lyakov, T. L. Talako, and T. F. Grigor’eva, Influence of Mechanical Activation on the Processes of Phase and Structure Formation during Self-Propagating High-Temperature Synthesis (Parallel’, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  25. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions," Fiz. Goreniya Vzryva 51 (5), 77–86 (2015) [Combust., Expl., Shock Waves 51 (5), 578–586 (2015); DOI: 10.1134/S0010508215050093.

    Article  Google Scholar 

  26. T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, “Mechanochemical Synthesis of Intermetallic Compounds," Usp. Khim. 70 (1), 52–71 (2001) [Russ. Chem. Rev., 70, 45–63 (2001); DOI: 10.1070/RC2001v070n01ABEH000598].

    Article  ADS  Google Scholar 

  27. N. V. Bukrina and A. V. Baranovskiy, “Synthesis of Composites Made of Powder Mixtures (Ti, C, and Al) in Controlled Heating," Prikl. Mekh. Tekh. Fiz. 60 (4), 165–173 (2019) [J. Appl. Mech. Tech. Phys. 60 (4), 732–739 (2019); DOI: 10.1134/S0021894419040187].

    Article  ADS  MathSciNet  Google Scholar 

  28. M. R. Akbarpour, S. Alipour, M. Najafi, et al., “Microstructural Characterization and Enhanced Hardness of Nanostructured Ni3Ti–NiTi (B2) Intermetallic Alloy Produced by Mechanical Alloying and Fast Microwave-Assisted Sintering Process," Intermetallics 131, 107119 (2021); DOI: 10.1016/j.intermet.2021.107119.

    Article  Google Scholar 

  29. L. I. Mirkin, X-ray Diffraction Control of Engineering Materials: Manual (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pribytkov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 6, pp. 66-74. https://doi.org/10.15372/FGV20220606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pribytkov, G.A., Baranovskii, A.V., Korzhova, V.V. et al. Synthesis of Titanium–Nickel Intermetallic Compounds from Mechanically Activated Powder Mixtures. Combust Explos Shock Waves 58, 688–695 (2022). https://doi.org/10.1134/S0010508222060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222060065

Keywords

Navigation