Skip to main content
Log in

Formation of Multiheaded Rotating Detonation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The flow in a combustion chamber in the form of an annular gap between plates with multiheaded rotating detonation has been studied numerically. It is assumed that a homogeneous propane–air mixture with given stagnation parameters enters the combustion chamber through elementary nozzles evenly distributed on its bounding outer ring. The gas-dynamic parameters of the mixture are determined as functions of the stagnation parameters and the static pressure in the gap. Conditions for the formation of a given number (three to eight) of waves in a multiheaded detonation wave in terms of the dimensions of the combustion chamber and the parameters of initiators required were obtained. The maximum number of waves for given dimensions of the combustion chamber is established. The existence of the maximum critical number of waves in multiheaded detonation is associated with the stoppage of the supply of the combustible mixture. Under the considered geometrical parameters of the flow region, one to eight rotating detonation waves are formed. It is found that in the case of an uneven arrangement of initiators, there is a gradual alignment of the mutual angles between the waves making up the multiheaded detonation. Calculations were performed on the Lomonosov supercomputer at the Moscow State University using an original software package implementing a modified Godunov method and a one-step reaction kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. V. P. Korobeinikov, V. A., Levin, V. V.Markov, and G. G Chernyi, “Propagation of Blast Waves in a Combustible Gas," Acta Astronaut. 17 (4), 529–537 (1972).

    Google Scholar 

  2. V.V. Mitrofanov and R. Soloukhin, “On the Diffraction of a Multifront Detonation Wave," Dokl. Akad. Nauk SSSR 159 (5), 1003–1006 (1964).

  3. R. I. Soloukhin, “Structure of a Multifront Detonation Wave in a Gas," Fiz. Goreniya Vzryva 1 (2), 35–42 (1965) [Combust., Expl., Shock Waves 1 (2), 35–42 (1965), 23–29 (1965); https://doi.org/10.1007/BF00757225].

    Article  Google Scholar 

  4. V. P. Korobeinikov and V. V. Markov, “On the Propagation of Combustion and Detonation," Arch. Procesów Spalania 8 (1) 101–118 (1977).

    Google Scholar 

  5. V. A. Levin and V.V. Markov, “Initiation of Detonation by Concentrated Release of Energy," Fiz. Goreniya Vzryva 11 (4), 623–633 (1975) [Combust., Expl., Shock Waves 11 (4), 529–536 (1975); https://doi.org/10.1007/BF00744922].

    Article  Google Scholar 

  6. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Direct Initiation of Detonation in a Hydrogen–Oxygen Mixture Diluted with Nitrogen," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 151–156 (1992) [Fluid Dyn. 27 (6), 873–876 (1992)].

    Article  ADS  Google Scholar 

  7. L. I. Sedov, V. P. Korobeinikov, and V. V. Markov, “Theory of Blast Wave Propagation," Tr. MIAN 175, 178–216 (1986).

    MathSciNet  MATH  Google Scholar 

  8. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Simulation of Detonation Initiation in a Combustible Mixture of Gases by Electric Discharge," Khim. Fiz. 3 (4), 611–614 (1984).

    Google Scholar 

  9. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of Detonation in Hydrogen–Air Mixture by Explosion of a Spherical TNT Charge," Fiz. Goreniya Vzryva 31 (2), 91–95 (1995) [Combust., Expl., Shock Waves 31 (2), 207–210 (1995); https://doi.org/10.1007/BF00755750].

    Article  Google Scholar 

  10. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Detonation Wave Reinitiation Using a Disintegrating Shell," Dokl. Akad Nauk 352 (1), 48–50 (1997) [Phys. Dokl. 42 (1), 25–27 (1997)].

  11. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Influence of the Air Layer on the Initiation of Detonation by an Explosion in a Hydrogen–Air Mixture," Tr. MIAN 223, 136–143 (1998).

    MATH  Google Scholar 

  12. V. A. Levin, V. V. Markov, S. F Osinkin, and T. A. Zhuravskaya, “Determination of Critical Conditions for Detonation Initiation in a Finite Volume by a Converging Shock Wave," Fiz. Goreniya Vzryva 38 (6), 96–102 (2002) [Combust., Expl., Shock Waves 38 (6), 693–699 (2002)].

    Article  Google Scholar 

  13. V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, “Direct Initiation of Detonation in a Hydrogen–Air Mixture by a Converging Shock Wave," Khim. Fiz. 20 (5), 26–30 (2001).

    Google Scholar 

  14. T. A. Zhuravskaya, V. A. Levin, V. V. Markov, and S. F. Osinkin, “Effect of a Collapsing Shell on Detonation Initiation in a Limited Volume by a Converging Shock Wave," Khim. Fiz. 22 (8), 34–37 (2003).

    Google Scholar 

  15. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “New Effects of Stratified Gas Detonation," Dokl. Akad Nauk 430 (2), 185–188 (2010) [Dokl. Phys. 55 (1), 28–32 (2010)].

  16. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Distinctive Features of Galloping Detonation in a Supersonic Combustible-Mixture Flow under an Inert Gas Layer," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 167–175 (2010) [Fluid Dyn. 45, 827–834 (2010); https://doi.org/10.1134/S0015462810050157].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Formation of Detonation in Rotating Channels," Dokl. Akad. Nauk 432 (6), 775–778 (2010) [Dokl. Phys. 55 (6), 308–311 (2010)].

  18. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Detonation Initiation by Rotation of an Elliptical Cylinder inside a Circular Cylinder and Deformation of the Channel Walls," Prikl. Mekh. Tekh. Fiz. 51 (4), 17–25 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 463–470 (2010); https://doi.org/10.1007/s10808-010-0062-6].

    Article  ADS  MATH  Google Scholar 

  19. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Mathematical Modeling of Shock-Wave Processes during Interaction of Gases with Solid Boundaries," Tr. MIAN 281, 42–54 (2013).

    Google Scholar 

  20. V. V. Markov, “Numerical Simulation of the Formation of the Multifront Structure of a Detonation Wave," Dokl. Akad. Nauk SSSR 258 (2), 314–317 (1981).

  21. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Initiation of Spinning Detonation in Circular Channels," Dokl. Akad. Nauk 460 (6), 656–659 (2015).

  22. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Numerical Simulation of Spinning Detonation in Circular Channels," Zh. Vychisl. Mat. Mat. Fiz. 56 (6), 1122–1137 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  23. F. A. Bykovskii and S. A. Zhdan, “Current Status of Research of Continuous Detonation in Air–Fuel Mixtures (Review)," Fiz. Goreniya Vzryva 51 (1), 31–46 (2015) [Combust., Expl., Shock Waves 51 (1), 21–35 (2015); https://doi.org/10.1134/S0010508215010025].

    Article  Google Scholar 

  24. V. K. Chvanov, V. A. Levin, P. S. Levochkin, et al., “Three-Dimensional Calculation of Gas-Dynamic Parameters of Combustion Products in the Annular Chamber of a Liquid-Propellant Rocket Engine with Rotating Detonation," Tr. NPO Energiya Glushko 32, 23–35 (2015).

  25. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Rotating Detonation Wave in an Annular Gap," Tr. MIAN 300 (1), 135–145 (2018).

    MathSciNet  Google Scholar 

  26. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Rotating Detonation Waves in Annular Gap with Variable Stagnation Pressure," Shock Waves 31, 651–663 (2021); DOI: 10.1007/s00193-020-00988-3.

    Article  ADS  Google Scholar 

  27. Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1978), Vol. I, Book 2 [in Russian].

    Google Scholar 

  28. C. K. Westbrook and F. L. Dryer “Chemical Kinetic Modeling of Hydrocarbon Combustion," Prog. Energy Combust. Sci. 10 (1), 1–57 (1984); DOI: 10.1016/0360-1285(84)90118-7.

    Article  Google Scholar 

  29. C. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  30. V. l. Voevodin, S. Zhumatii, S. Sobolev, et al., “Practice of Lomonosov Supercomputer," Otkrytye Sistemy. SUBD, No. 7, 36–39 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Levin, I. S. Manuilovich or V. V. Markov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 79-86.https://doi.org/10.15372/FGV20220510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Manuilovich, I.S. & Markov, V.V. Formation of Multiheaded Rotating Detonation. Combust Explos Shock Waves 58, 577–584 (2022). https://doi.org/10.1134/S0010508222050100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222050100

Keywords

Navigation