Skip to main content
Log in

Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. II. Numerical Simulation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of numerical simulations of turbulent reacting flows in a channel with sudden expansion with due allowance for injection of hydrogen jets into a supersonic (M = 4) air flow are reported. The simulations are performed in a three-dimensional unsteady formulation with the use of the ANSYS Fluent software under the conditions of experiments performed in the IT-302M high-enthalpy wind tunnel. The computations predict a self-oscillatory regime with intense oscillations of pressure and integral heat release. The period-averaged pressure distribution is in reasonable agreement with the experimental measurements, and the frequency of pressure oscillations is within the range obtained in the experiments. Based on a detailed analysis of the flow characteristics within the full cycle of oscillations, the feedback mechanism responsible for the emergence of self-supported oscillations is refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. B. V. Raushenbakh, Vibrational Combustion (Fizmatgiz, Moscow, 1967) [in Russian].

    Google Scholar 

  2. V. M. Larionov and R. G. Zaripov, Self-Sustained Oscillations of the Gas in Facilities with Combustion (Izd. Kazan. Gos. Tekh. Univ., Kazan, 2003) [in Russian].

    Google Scholar 

  3. F. Ma, J. Li, V. Yang, et al., “Thermoacoustic Flow Instability in a Scramjet Combustor," in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 10–13 July, 2005, Tucson, Arizona, AIAA Paper No. 2005-3824; DOI: 10.2514/6.2005-3824.

  4. M. V. Sun, C. Gong, S. P. Zhang, et al., “Spark Ignition Process in a Scramjet Combustor Fueled by Hydrogen and Equipped with Multi-Cavities at Mach 4 Flight Condition," Exp. Therm. Fluid Sci. 43, 90–96 (2012); DOI: 10.1177/0954410016629495.

    Article  Google Scholar 

  5. K.-C. Lin, K. Jackson, R. Behdadnia, et al., “Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder," J. Propul. Power 26 (6), 1161–1169 (2010); DOI: 10.2514/1.43338.

    Article  Google Scholar 

  6. H. Ouyang, W. Liu, and M. Sun, “The Large-Amplitude Combustion Oscillation in a Single-Side Expansion Scramjet Combustor," Acta Astronaut. 117, 90–98 (2015); DOI: 10.1016/j.actaastro.2015.07.016.

    Article  ADS  Google Scholar 

  7. T. Sunami and M. Kodera, “Numerical Investigation of a Detonation Wave System in a Scramjet Combustor," in 18th AIAA/3AF Int. Space Planes and Hypersonic Systems and Technologies Conf., 24–28 Sept., 2010, Tours, France, AIAA Paper No. 2012–5861; DOI: 10.2514/6.2012-5861.

  8. T. Mitani and T. Kouchi, “Flame Structures and Combustion Efficiency Computed for a Mach 6 Scramjet Engine," Combust. Flame 142 (3), 187–196 (2005); DOI: 10.1016/j.combustflame.2004.10.004.

    Article  Google Scholar 

  9. M. A. Frost, D. Y. Gangurde, A. Paull, and D. J. Mee, “Boundary-Layer Separation due to Combustion-Induced Pressure Rise in a Supersonic Flow," AIAA J. 47 (4), 1050–1053 (2009); DOI: 10.2514/1.40868.

    Article  ADS  Google Scholar 

  10. M. L. Fotia and J. F. Driscoll, “Ram-Scram Transition and Flame/Shock-Train Interactions in a Mode l Scramjet Experiment," J. Propul. Power 29 (1), 261–273 (2013); DOI: 10.2514/1.B34486.

    Article  Google Scholar 

  11. S.-M. Jeong, H.-S. Han, B.-K. Sung, et al., “Numerical Simulation of Combustion Instability in a Direct-Connect Supersonic Combustor," in AIAA Propulsion and Energy 2021 Forum, AIAA Paper No. 2021-3535; DOI: 10.2514/6.2021-3535.

  12. J. Li, F. Ma, V. Yang, et al., “A Comprehensive Study of Combustion Oscillations in a Hydrocarbon-Fueled Scramjet Engine," in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007, AIAA Paper No. 2007-836; DOI: 10.2514/6.2007-836.

  13. J.-Y. Choi, F. Ma, and V. Yang, “Combustion Oscillations in a Scramjet Engine Combustor with Transverse Fuel Injection," Proc. Combust. Inst. 30 (2), 2851–2858 (2005); DOI: 10.1016/j.proci.2004.08.250.

    Article  Google Scholar 

  14. H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-Averaged Navier–Stokes Simulation of Combustion Oscillations in a Cavity-Based Supersonic Combustor," Int. J. Hydrogen Energy 38 (14), 5918–5927 (2013); DOI: 10.1016/j.ijhydene.2013.02.100.

    Article  Google Scholar 

  15. V. V. Vlasenko, V. A. Sabelnikov, S. S. Molev, et al., “Transient Combustion Phenomena in High-Speed Flows in Ducts," Shock Waves 30, 245–261 (2020); DOI: 10.1007/s00193-020-00941-4.

    Article  ADS  Google Scholar 

  16. G.-Y. Zhao, J.-H. Du, H.-X. Yang, et al., “Effects of Injection on Flame Flashback in Supersonic Crossflow," Aerosp. Sci. Technol. 120, 107226 (2022); DOI: 10.1016/j.ast.2021.107226.

    Article  Google Scholar 

  17. M. A. Goldfeld, Yu. V. Zakharova, A. V. Fedorov, and N. N. Fedorova, “Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization," Fiz. Goreniya Vzryva 54 (6), 3–16 (2018) [Combust., Expl., Shock Waves 54 (6), 629–641 (2018); DOI: 10.1134/S0010508218060011].

    Article  Google Scholar 

  18. N. N. Fedorova, O.S. Vankova, and M. A. Goldfeld, “Unsteady Regimes of Hydrogen Ignition and Flame Stabilization in a Channel," Fiz. Goreniya Vzryva 58 (2), 3–11 (2022) [Combust., Expl., Shock Waves 58 (2), 127–134 (2022); DOI: 10.1134/S0010508222020010].

    Article  Google Scholar 

  19. N. N. Fedorova, M. A. Goldfeld, and V. V. Pickalov, “Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. I. Experiment," Fiz. Goreniya Vzryva 58 (5), 44–53 (2022) [Combust., Expl., Shock Waves 58 (5), 535–544 (2022); DOI: 10.1134/S0010508222050057].

  20. M. A. Goldfeld, “Processes of Self-Ignition and Flame Stabilization with Transverse Hydrogen Fuel Injection into a Supersonic Combustion Chamber," Teplofiz. Aeromekh. 27 (4), 601–613 (2020) [Thermophys. Aeromech. 27 (4), 573–584 (2020)].

    Article  ADS  Google Scholar 

  21. M. A. Goldfeld, “The Heat Flux Research in Hydrogen Supersonic Combustor at Mach Number of 4," Int. J. Hydrogen Energy 46 (24), 13365–13376 (2021); DOI: 10.1016/j.ijhydene.2021.01.093.

    Article  Google Scholar 

  22. “ANSYS CFD Academic Research," Custom number 610336.

  23. D. C. Wilcox, Turbulence Modeling for CFD (DCW Industries, La Canada, 2006.

    Google Scholar 

  24. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA J. 32 (8), 1598–1605 (1994); DOI: 10.2514/3.12149.

    Article  ADS  Google Scholar 

  25. D. Tropin and I. Bedarev, “Physical and Mathematical Modeling of Interaction of Detonation Waves with Inert Gas Plugs," J. Loss Prev. Process Ind. 72, 104595 (2021); DOI: 10.1016/j.jlp.2021.104595.

    Article  Google Scholar 

  26. N. N. Fedorova, O. S. Vankova, and Yu. V. Zakharova, “Simulation of Hydrogen Mixing and Supersonic Combustion under Condition of Hot-Shot Aerodynamic Facility," AIP Conf. Proc. 2125 (1), 030080 (2019); DOI: 10.1063/1.5117462.

  27. P. Gerlinger, P. Stoll, M. Kindler, et al., “Numerical Investigation of Mixing and Combustion Enhancement in Supersonic Combustors by Strut Induced Streamwise Vorticity," Aerosp. Sci. Technol. 12 (2), 159–168 (2008); DOI: 10.1016/j.ast.2007.04.003.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fedorova.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 44-53.https://doi.org/10.15372/FGV20220506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, N.N., Goldfeld, M.A. & Pickalov, V.V. Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. II. Numerical Simulation. Combust Explos Shock Waves 58, 546–554 (2022). https://doi.org/10.1134/S0010508222050069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222050069

Keywords

Navigation