Skip to main content
Log in

Regimes of Lean Premixed Combustion of Gas Fuel in a Radial Burner

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of an experimental study of the characteristics of a swirling flow with the formation of vortex structures in a radial burner under isothermal and reacting conditions for various flow swirling parameters. For isothermal conditions, the distributions of average and fluctuating velocity fields are obtained, including those related to a precessing vortex phase. Moreover, pressure fluctuations induced by the precessing vortex are analyzed and the contribution of the precessing vortex structure to the overall level of turbulence is determined. The studies are carried out using modern non-intrusive experimental methods of flow diagnostics, such as optical imaging and particle image velocimetry (PIV). An acoustic field generated by vortex core precession (VCP) is recorded using four measuring microphones with pressure taps. The contribution of VCP to the overall level of turbulence is revealed using the method of proper orthogonal decomposition (POD), also applied to analyze the velocity distributions obtained by the PIV method. The experiments show that, in the isothermal case, the VCP that occurs after the swirl parameter overcomes a value \(S= 0.6\) is a single-helix vortex structure whose contribution to the overall level of kinetic turbulence energy reaches up to 27%. For reacting conditions, the flame is visualized at different levels of flow swirling and the frequency characteristics of the VCP occurring in the flow at \(S \ge 0.6\) are measured. It is shown that the dependence of the dimensionless frequency of the VCP as a function of the flow swirl \(S\) has the same nonmonotonic character both in the case of combustion and in the isothermal case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. Roussillo, Ph. Scouflaire, S. Candel, and B. Franzelli, “Experimental Investigation of Soot Production in a Confined Swirled Flame Operating under Perfectly Premixed Rich Conditions," in Proc. Combust. Inst. 37 (1), 893–901 (2018); DOI: 10.1016/j.proci.2018.06.110.

    Article  Google Scholar 

  2. M. Stöhr, K. P. Geigle, R. Hadef, et al., “Time-Resolved Study of Transient Soot Formation in an Aero-Engine Model Combustor at Elevated Pressure," Proc. Combust. Inst. 37 (4), 5421–5428 (2019); DOI: 10.1016/j.proci.2018.05.122.

    Article  Google Scholar 

  3. S. Chatterjee and Ö. L. Gülder, “Soot Concentration and Primary Particle Size in Swirl-Stabilized Non-Premixed Turbulent Flames of Ethylene and Air," Exp. Therm. Fluid Sci. 95, 73–80 (2018); DOI: 10.1016/j.expthermflusci.2018.01.035.

    Article  Google Scholar 

  4. T. C. Lieuwen and V. Yang, Gas Turbine Emissions (Cambridge Univ. Press, Cambridge, 2013); DOI: 10.2514/1.J053061.

  5. N. Syred, “A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems," Prog. Energy Combust. Sci. 32 (2), 93–161 (2006); DOI: 10.1016/j.pecs.2005.10.002.

    Article  Google Scholar 

  6. K. Oberleithner, M. Stöhr, S. H. Im, et al., “Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis," Combust. Flame 162 (8), 3100–3114 (2015); DOI: 10.1016/j.combustflame.2015.02.015.

    Article  Google Scholar 

  7. A. Valera-Medina, Coherent Structures and Their Effects on Processes Occurring in Swirl Combustors (Cardiff University, Cardiff, 2009).

    Google Scholar 

  8. A. M. Steinberg, C. M. Arndt, and W. Meier, “Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion," Proc. Combust. Inst. 34 (2), 3117–3125 (2013); DOI: 10.1016/j.proci.2012.05.015.

    Article  Google Scholar 

  9. M. Stöhr, I. Boxx, C. D. Carter, and W. Meier, “Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor," Combust. Flame 159 (8), 2636–2649 (2012); DOI: 10.1016/j.combustflame.2012.03.020.

    Article  Google Scholar 

  10. S. Candel, D. Durox, T. Schuller, et al., “Dynamics of Swirling Flames," Annu. Rev. Fluid Mech. 46, 147–173 (2014); DOI: 10.1146/annurev-fluid-010313-141300.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. I. V. Litvinov, A. V. Nazarov, and S. I. Shtork, “Suppression of Vortex Core Precession in a Swirling Reacting Flow," Teplofiz. Aeromekh. 23 (2), 315–318 (2016) [Thermophys. Aeromech. 23 (2), 305–308 (2016)].

    Article  ADS  Google Scholar 

  12. P. M. Anacleto, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor," Combust. Sci. Technol. 175 (8), 1369–1388 (2003); DOI: 10.1080/00102200302354.

    Article  Google Scholar 

  13. S. I. Shtork, N. F. Vieira, and E. C. Fernandes, “On the Identification of Helical Instabilities in a Reacting Swirling Flow," Fuel 87 (10–11), 2314–2321 (2008); DOI: 10.1016/j.fuel.2007.10.016.

    Article  Google Scholar 

  14. J. P. Moeck, J.-F. Bourgouin, D. Durox, et al., “Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame," Combust. Flame 159 (8), 2650–2668 (2012); DOI: 10.1016/j.combustflame.2012.04.002.

    Article  Google Scholar 

  15. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Temporally Resolved Planar Measurements of Transient Phenomena in a Partially Pre-Mixed Swirl Flame in a Gas Turbine Model Combustor," Combust. Flame 157 (8), 1510–1525 (2010); DOI: 10.1016/j.combustflame.2009.12.015.

    Article  Google Scholar 

  16. I. V. Litvinov, E. U. Gorelikov, D. A. Suslov, and S. I. Shtork, “Analysis of the Swirl Number in a Radial Swirler," AIP Conf. Proc. 2211 (1), 040005 (2020); DOI: 10.1063/5.0000777.

  17. I. V. Litvinov, E. U. Gorelikov, and S. I. Shtork, “The Unsteady Swirling Jet in a Model of Radial Burner," J. Phys.: Conf. Ser. 2119, 012106 (2021).

  18. A. K. Gupta, D. G. Lilley, and N. Syred, Swirl Flows (Abacus Press, Tunbridge Wells, 1984).

    Google Scholar 

  19. I. V. Litvinov, S. I. Shtork, P. A. Kuibin, et al., “Experimental Study and Analytical Reconstruction of Precessing Vortex in a Tangential Swirler," Int. J. Heat Fluid Flow 42, 251–264 (2013); DOI: 10.1016/j.ijheatfluidflow.2013.02.009.

    Article  Google Scholar 

  20. F. Lückoff, M. Sieber, C. O. Paschereit, and K. Oberleithner, “Phase-Opposition Control of the Precessing Vortex Core in Turbulent Swirl Flames for Investigation of Mixing and Flame Stability," J. Eng. Gas Turbines Power 141 (11), 111008 (2019); DOI: 10.1115/1.4044469.

    Article  Google Scholar 

  21. Ph. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge Univ. Press, 2012); DOI: 10.1017/CBO9780511622700.

    Book  MATH  Google Scholar 

  22. L. Sirovich, “Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures," Quart. Appl. Math. 45 (3), 561–571 (1987).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. D. M. Markovich, S. S. Abdurakipov, L. M. Chikishev, et al., “Comparative Analysis of Low- and High-Swirl Confined Flames and Jets by Proper Orthogonal and Dynamic Mode Decompositions," Phys. Fluids 26 (6), 065109 (2014); DOI: 10.1063/1.4884915.

    Article  ADS  Google Scholar 

  24. R. Gurka, A. Liberzon, and G. Hetsroni, “POD of Vorticity Fields: A Method for Spatial Characterization of Coherent Structures," Int. J. Heat Fluid Flow 27 (3), 416–423 (2006); DOI: 10.1016/j.ijheatfluidflow.2006.01.001.

    Article  Google Scholar 

  25. K. Oberleithner, M. Sieber, C. N. Nayeri, et al., “Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction," J. Fluid Mech. 679, 383–414 (2011); DOI: 10.1017/jfm.2011.141.

    Article  ADS  MATH  Google Scholar 

  26. P. J. Schmid, “Dynamic Mode Decomposition of Numerical and Experimental Data," J. Fluid Mech. 656, 5–28 (2010); DOI: 10.1017/S0022112010001217.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. I. V. Litvinov and S. I. Shtork, “Identification of Geometrical Vortex Parameters in Tangential Swirler," J. Phys.: Conf. Ser. 1105, 012099 (2018).

  28. I. Litvinov, J. Yoon, C. Noren, et al., “Time-Resolved Study of Mixing and Reaction in an Aero-Engine Model Combustor at Increased Pressure," Combust. Flame 231, 111474 (2021); DOI: 10.1016/j.combustflame.2021.111474.

    Article  Google Scholar 

  29. I. V. Litvinov, D. K. Sharaborin, and S. I. Shtork, “Reconstructing the Structural Parameters of a Precessing Vortex by SPIV and Acoustic Sensors," Exp. Fluids 60 (9), Article ID 139 (2019); DOI: 10.1007/s00348-019-2783-5.

    Article  Google Scholar 

  30. G. Cafiero, G. Ceglia, S. Discetti, et al., “On the Three-Dimensional Precessing Jet Flow Past a Sudden Expansion," Exp. Fluids 55 (2), 1–13 (2014); DOI: 10/1007/s00348-014-1677-9.

    Article  Google Scholar 

  31. D. M. Markovich, V. M. Dulin, S. S. Abdurakipov, et al., “Helical Modes in Low- and High-Swirl Jets Measured by Tomographic PIV," J. Turbulence 17 (7), 678–698 (2016); DOI: 10.1080/14685248.2016.1173697.

    Article  ADS  Google Scholar 

  32. E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “An Analysis of Unsteady Highly Turbulent Swirling Flow in a Model Vortex Combustor," Exp. Fluids 40, 177–187 (2006); DOI: 10.1007/s00348-005-0034-4.

    Article  ADS  Google Scholar 

  33. M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor," Proc. Combust. Inst. 33 (2), 2923–2960 (2011); DOI: 10.1016/j.proci.2010.06.103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Gorelikov, I. V. Litvinov or S. I. Shtork.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 18-27.https://doi.org/10.15372/FGV20220503.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelikov, E.Y., Litvinov, I.V. & Shtork, S.I. Regimes of Lean Premixed Combustion of Gas Fuel in a Radial Burner. Combust Explos Shock Waves 58, 521–530 (2022). https://doi.org/10.1134/S0010508222050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222050033

Keywords

Navigation