Skip to main content
Log in

On the Development of Technologies for Reducing Carbon Footprint in the Energy Sector

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Technological approaches to reducing carbon dioxide emissions in the energy sector are considered. Three levels of carbon dioxide generation by fuel power plants are identified. Fuel power plants are analyzed in terms of the most sensitive parameters in carbon capture, utilization and storage technologies: pressure and the purity and amount of generated carbon dioxide. According to the carbon dioxide output parameters, power plants can be divided into three groups: A, B, and C. Using a screening life cycle analysis method, the integral characteristics of the main technologies for utilization of CO2 emissions from energy industries are considered depending on the level of technological maturity and market attractiveness. The groups of geological recycling, mineralization, carbonization, and bioutilization technologies promising for the Russian industrial and energy sectors are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The specific CO2 emissions from more efficient power plants based on the direct conversion of chemical energy into electrical energy are markedly lower, but stringent restrictions on the unit capacity of thermal energy reduce their competitive advantages at large power plants.

REFERENCES

  1. Message from the 25 Framework Convention on Climate Change, UN FCCC; https://www.un.org/ en/climatechange/cop26.

  2. “World Energy Outlook," International Energy Agency (2021); https://www.iea.org/topics/world-energy-outlook.

  3. J. Morris, H. Kheshgi, S. Paltsev, and H. Herzog, “Scenarios for the Deployment of Carbon Capture and Storage in the Power Sector in a Portfolio of Mitigation Options," Climatic Change Econom. 12 (1), 215001 (2021); DOI: 10.1142/S2010007821500019.

    Article  Google Scholar 

  4. S. V. Alekseenko, V. Yu. Borodulin, N. A. Gnatus, M. I. Nizovtsev, and N. N. Smirnova, “Problems and Outlooks for Petrothermal Power Engineering (Review)," Teplofiz. Aeromekh. 23 (1), 1–16 (2016) [Thermophys. Aeromech. 23 (1), 1–16 (2016); https://doi.org/10.1134/S0869864316010017].

    Article  ADS  Google Scholar 

  5. T. Lecomte, J. F. F. De la Fuente, F. Neuwah., M. Canova, A. Pinasseau, Jankov I., T. Brinkmann, S. Roudier, and L.D. Sancho, “Best Available Techniques (BAT) Reference Document for Large Combustion Plants," Report No. EUR 28836 EN (Publications Office of the EU 986, Luxembourg, 2017).

  6. Guidelines for Conducting a Voluntary Inventory of Greenhouse Gas Emissions in the Constituent Entities of the Russian Federation, Approved by the Order of the Ministry of Natural Resources of Russia Dated April 16, 2015 (Moscow, 2015) [in Russian].

  7. M. Finkenrath, Cost and Performance of Carbon Dioxide Capture from Power Generation (IEA, Paris, 2011).

    Google Scholar 

  8. A. Pettinau, E. Ferrara, and C. Amorino, “Techno-Economic Comparison between Different Technologies for a CCS Power Generation Plant Integrated with a Sub-Bituminous Coal Mine in Italy," Appl. Energy 99, 32–39 (2012); DOI: 10.1016/j.apenergy.2012.05.008.

    Article  Google Scholar 

  9. J. Urech, L. Tock, T. Harkin, A. Hoadley, and F. Maréchal, “An Assessment of Different Solvent-Based Capture Technologies within an IGCC–CCS Power Plant," Energy 64, 268–276 (2014); DOI: 10.1016/j.energy.2013.10.081.

    Article  Google Scholar 

  10. A. Giuffrida, M. C. Romano, and G. Lozza, “CO2 Capture from Air-Blown Gasification-Based Combined Cycles," in Turbine Technical Conference and Exposition, Proc. ASME Turbo Expo 2012: Copenhagen, Denmark, June 11–15, 2012, GT2012-69787 (2012), pp. 395–404.

  11. G. G. Lozza, M. C. Romano, and A. Giuffrida, “Thermodynamic Performance of IGCC with Oxy-Combustion CO2 Capture," in 1st Int. Conf. on Sustainable Fossil Fuels for Future Energy S4FE, 2009.

  12. H. Shirai, S. Hara, E. Koda, et al., “Proposal of a Highly Efficient System with CO2 Capture and the Task on Integrated Coal Gasification Combined Cycle Power Generation," CRIEPI Report No. M07003 (2007); https:// criepi.denken.or.jp/hokokusho/pb/report Download?reportNoUkCode=M07003&tenpuType Code=30& seqNo=1&reportId=6824.

  13. “Allam Cycle Zero Emission Coal Power. DOE/NETL Rep. 89243319CFE000015 Coal-Based Power Plants of the Future" (2019); https://netl.doe.gov/sites/default/ files/2019-10/Direct-Fired-Supercritical-Carbon- Dioxide-Power-Plant-System-8-Rivers-Capital.pdf.

  14. R. Allam, S. Martin, B. Forrest, J. Fetvedt, X. Lu, D. Freed, G. W. Brown, Jr, T. Sasaki, M. Itoh, and J. Manning, “Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture," Energ. Procedia 114, 5948–5966 (2017); DOI: 10.1016/j.egypro.2017.03.1731.

    Article  Google Scholar 

  15. Ph. Mathieu and R. Nihart, “Sensitivity Analysis of the MATIANT Cycle," Energy Converters. Manag. 40 (15/16), 1687–1700 (1999); DOI: 10.1016/S0196-8904(99)00062-X.

    Article  Google Scholar 

  16. P. A. Berezinets, V. M. Grinenko, I. V. Dolinin, V. N. Kondrat’ev, A. Ya. Kopsov, R. I. Kostyuk, G. G. Ol’khovskii, Yu. V. Petrov, and Yu. A. Radin, "Constructing the Russian Combined-Cycle Cogeneration Plant and Mastering Its Operation," Teploenergetika, No. 6, 4–11 (2011) [Therm. Eng. 58, 447–455 (2011); https://doi.org/ 10.1134/S0040601511060012].

    Article  ADS  Google Scholar 

  17. A. S. Kosoi, Yu. A. Zeigarni, O. S. Popel, M. V. Sinkevich, S. P. Filippov, and V. Ya. Shterenberg, “The Conceptual Process Arrangement of a Steam–Gas Power Plant with Fully Capturing Carbon Dioxide from Combustion Products," Teploenergetika, No. 9, 23–32 (2018) [Therm. Eng. 65, 597–605 (2018); https://doi.org/10.1134/S0040601518090045].

    Article  ADS  Google Scholar 

  18. A. F. Ryzhkov, T. F. Bogatova, G. E. Maslennikov, P. V. Osipov, and V. A. Nizov, “Creation of Energy-Efficient and Environmentally Friendly Energy Sources on Fossil Fuels to Address Global Climate Issues," J. Phys.: Conf. Ser. 1677 (1), 012115 (2020); DOI: 10.1088/1742-6596/1677/1/012115.

    Article  Google Scholar 

  19. R. M. Cuéllar-Franca and A. Azapagic, “Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of their Lives Cycle Environmental Impacts," J. CO2 Utilization 9, 82–102 (2015); DOI: 10.1016/j.jcou.2014.12.001.

    Article  Google Scholar 

  20. IEA Putting CO2 to Use (IEA, Paris, 2019).

  21. A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M. M. Maroto-Valer, “A Review of Mineral Carbonation Technologies to Sequester CO2," Chem. Soc. Rev. 43 (23), 8049–8080 (2014); DOI: 10.1039/C4CS00035H.

    Article  Google Scholar 

  22. H. Herzog, “Lessons Learned from CCS Demonstration and Large Pilot Projects. An MIT Energy Initiative Working Paper," (Massachusetts Inst. of Technol., Cambridge, 2016); https://sequestration.mit.edu/bibliography/CCS %20Demos.pdf.

  23. G. A. Ryabov, “Chemical Looping Combustion and Gasification of Fuels. A Review of Studies and New Process Solutions," Teploenergetika, No. 1, 32–50 (2022) [Therm. Eng. 69, 26–41 (2022); https://doi.org/10.1134/S0040601521100062].

    Article  ADS  Google Scholar 

  24. N. Wei, X. Li, Z. Fang, B. Bai, Q. Li, S. Liu, and Y. Jia, “Regional Distribution of Onshore Carbon Geological Utilization in China," J. CO2 Utilization 11, 20–30 (2015); DOI: 10.1016/j.jcou.2014.12.005.

    Article  Google Scholar 

  25. H. J. Ho, A. Iizuka, and E. Shibata, “Carbon Capture and Utilization Technology without Carbon Dioxide Purification and Pressurization: A Review on Its Necessity and Available Technologies," Ind. Eng. Chem. Res. 58 (21), 8941–8954 (2020); DOI: 10.1021/acs.iecr.9b01213.

    Article  Google Scholar 

  26. S. Walspurger and H. A. J. van Dijk, “EDGAR CO2 Purity: Type and Quantities of Impurities Related to CO2 Point Source and Capture Technology: A Literature Study," ECN-E-12-054, 2012.

  27. A. F. Ryzhkov, T. F. Bogatova, G. E. Maslennikov, and P. V. Osipov, “A New Approach to the Development of Zero-Emission Power Generation System," J. Phys.: Conf. Ser. 1675 (1), 012121 (2020); DOI: 10.1088/1742-6596/1675/1/012121.

    Article  Google Scholar 

  28. R. Chauvy, N. Meunier, D. Thomas, and G. De Weireld, “Selecting Emerging CO2 Utilization Products for Short- to Mid-Term Deployment," Appl. Energy 236, 662–680 (2019); DOI: 10.1016/j.apenergy.2018.11.096.

    Article  Google Scholar 

  29. S. P. Singh and P. Singh, “Effect of CO2 Concentration on Algal Growth: A Review," Renew. Sustain. Energy Rev. 38, 172–179 (2014); DOI: 10.1016/j.rser.2014.05.043.

    Article  Google Scholar 

  30. E. Adu, Y. Zhang, and D. Liu, “Current Situation of Carbon Dioxide Capture, Storage, and Enhanced oil Recovery in the Oil and Gas Industry," Can. J. Chem. Eng. 97 (5), 1048–1076 (2018); DOI: 10.1002/cjce.23393.

    Article  Google Scholar 

  31. Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide (Global CCS Institute, 2011); https://www.globalccsinstitute.com/resources/ publications-reports-research/accelerating-the-uptake- of-ccs-industrial-use-of-captured-carbon-dioxide/.

  32. M. Gazzani, E. Macchi, and G. Manzolini, “CO2 Capture in Integrated Gasification Combined Cycle with SEWGS—Part A: Thermodynamic Performances," Fuel 105, 206–219 (2013); DOI: 10.1016/j.fuel.2012.07.048.

    Article  Google Scholar 

  33. X. Wang and M. M. Maroto-Valer, “Dissolution of Serpentine Using Recyclable Ammonium Salts for CO2 Mineral Carbonation," Fuel 90 (3), 1229–1237 (2011); DOI: 10.1016/j.fuel.2010.10.040.

    Article  Google Scholar 

  34. S. J. Gerdemann, W. K. O ’Connor, D. C. Dahlin, L. R. Penner, and H. Rush, “Ex Situ Aqueous Mineral Carbonation," Environ. Sci. Technol. 41 (7), 2587–2593 (2007); DOI: 10.1021/es0619253.

    Article  ADS  Google Scholar 

  35. K. J. Reddy, S. John, H. Weber, M. D. Argyle, P. Bhattacharyya, D. T. Taylor, M. Christensen, T. Foulke, and P. Fahlsing, “Simultaneous Capture and Mineralization of Coal Combustion Flue Gas Carbon Dioxide (CO2)," Energy Procedia 4, 1574–1583 (2011); DOI: 10.1016/j.egypro.2011.02.027.

    Article  Google Scholar 

  36. Municipal Solid Waste and Its Role in Sustainability: IEA Bioenergy (Vienna, Austria, 2003); ExCo 2003:02; https://www.ieabioenergy.com/ wp-content uploads/2013/10/ 40_IEAPositionPaperMSW.pdf.

  37. C. D. Hills, N. Tripathi, and P. J. Carey, “Mineralization Technology for Carbon Capture, Utilization, and Storage," Front. Energy Res. (2020); DOI: 10.3389/fenrg.2020.00142.

    Article  Google Scholar 

  38. S. V. Alekseenko, “Waste-to-Energy Conversion. Ten Breakthrough Ideas in the Energy Sector for the Next 10 Years," in Association for the Development of Int. Research and Projects in the Field of Energy “Global Energy" (2020), pp. 53–64; https://globalenergyprize.org/ru/wp-content/ uploads/2021/05/10-proryvnyh-idej-v-energetike-na- sledujushhie-10-let.pdf.

  39. A. N. Tugov, Energy Utilization of Municipal Solid Waste at Thermal Power Plants (Vseross. Teplotekh. Inst., Moscow, 2017).

    Google Scholar 

  40. G. Gadikota and A. A. Park, “Accelerated Carbonation of Ca- and Mg-Bearing Minerals and Industrial Wastes Using CO2," in Carbon Dioxide Utilisation: Closing the Carbon Cycle, Ed. by P. Styring, E. A. Quadrelli, and K. Armstrong (Elsevier, 2015), pp. 115–137l; DOI: 10.1016/B978-0-444-62746-9.00008-6.

  41. C. V. Zalesov, V. V. Fomin, E. P. Platonov, et al., “Ural-Karbon Landfill (Severka)," Lesa Rossii Khozyastvo Nikh, No. 3, 4–14 (2021); DOI: 10.51318/FRET.2021.89.34.001.

  42. CREON Energy; https://www.ccus.ru.

  43. Z. Ismagilov, “Multifaceted coal," Vesti Elektroenerg., No. 5 (115), 10–15 (2021).

  44. K. Jana, A. Ray, M. M. Majoumerd, M. Assadi, and S. De, “Polygeneration as a Future Sustainable Energy Solution—A Comprehensive Review," Appl. Energ. 202, 88–111 (2017); DOI: 10.1016/j.apenergy.2017.05.129.

    Article  Google Scholar 

  45. G. A. Ryabov, O. M. Folomeev, D. A. Sankin, I. A. Dolgushin, and D. S. Litun, “Developments of the All-Russia Thermal Engineering Institute to Justify the Use of Circulating Fluidized Bed Technology for CO2 Capture and Polygeneration Systems," Energetik, No. 6, 21–23 (2016).

  46. A. D. Nikitin, A. F. Ryzhkov, and G. E. Maslennikov, “Using CO2 from the Flue Gases of Thermal Power Plants in the Production of Soda As a Way to Solve Environmental Problems and Preserve Shikhans in the Republic of Bashkortostan," in Use of Solid Fuels for Efficient and Environmentally Friendly Production of Electricity and Heat, Proc. V Int Sci.-Tech. Conf. (Vseross. Teplotekh. Inst. Moscow, 2020), pp. 114–118.

  47. A. F. Ryzhkov, T. F. Bogatova, G. E. Maslennikov, and P. V. Osipov, "Chemical Recycling of Ash and Industrial Wastes at Coal-Fired Power Plants with CO2 Utilization," Khim. Interes. Ust. Razv.  28 (6), 593–598 (2020) [Chem. Sustain. Develop., 28 (6), 576–581 (2020); DOI: 10.15372/CSD2020267].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Ryzhkov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 112-125.https://doi.org/10.15372/FGV20220413.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkov, A.F., Bogatova, T.F., Tugov, A.N. et al. On the Development of Technologies for Reducing Carbon Footprint in the Energy Sector. Combust Explos Shock Waves 58, 494–506 (2022). https://doi.org/10.1134/S001050822204013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822204013X

Keywords

Navigation