Skip to main content
Log in

Experimental and Theoretical Study of Diffusion Combustion of Methane above a Gas Hydrate Layer in a Laminar Air Flow

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The fraction of methane in gas hydrates is approximately 12% (by weight). Theoretically, the combustion temperature of such a composition is rather low. Nevertheless, the measurements show that a much higher flame temperature can be ensured by organizing the process more appropriately. For this purpose, it is necessary to separate the dissociation and combustion regions (i.e., eliminate water heating). On the other hand, for combustion to be stable, some part of the combustion heat should be returned to the hydrate region to maintain the dissociation rate at a needed level. Stability of methane hydrate combustion is naturally determined by the ratio of heat release and heat transfer. This paper describes experiments on methane combustion above a layer of a dissociating gas hydrate, and a simple mathematical model is proposed for estimating diffusion combustion stability. Comparing the modeling results with experimental data allows one to determine the water vapor concentration and find the thermal balance of hydrate combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. A. Yu. Manakov, N. V. Pen’kov, T. V. Rodionova, et al., “Kinetics of Formation and Dissociation of Gas Hydrates," Usp. Khim. 86 (9), 845–869 (2017).

    Article  Google Scholar 

  2. Z. Yin and P. Linga, “Methane Hydrates: A Future Clean Energy Resource," Chin. J. Chem. Eng. 27 (9), 2026–2036 (2019); DOI: 10.1016/j.cjche.2019.01.005.

    Article  Google Scholar 

  3. H. P. Veluswamy, A. Kumar, Y. Seo, et al., “A Review of Solidified Natural Gas (SNG) Technology for Gas Storage via Clathrate Hydrates," Appl. Energy 216, 262–285 (2018); DOI: 10.1016/j.apenergy.2018.02.059.

    Article  Google Scholar 

  4. A. Hassanpouryouzband, E. Joonaki, M. V. Farahani, et al., “Gas Hydrates in Sustainable Chemistry," Chem. Soc. Rev. 49 (15), 5225–5309 (2020); DOI: 10.1039/C8CS00989A.

    Article  Google Scholar 

  5. A. Yu. Snegirev, E. A. Kuznetsov, O. P. Korobeinichev, et al., “Ignition and Burning of the Composite Sample Impacted by the Bunsen Burner Flame: A Fully Coupled Simulation," Fire Saf. J. 127, 103507 (2022); DOI: 10.1016/j.firesaf.2021.103507.

    Article  Google Scholar 

  6. E. P. Volchkov, V. I. Terekhov, and V. V. Terekhov, “Flow Structure and Heat and Mass Transfer in Boundary Layers with Injection of Chemically Reacting Substances (Review)," Fiz. Goreniya Vzryva 40 (1), 3–20 (2004) [Combust., Expl., Shock Waves 56 (1), 1–16 (2004)].

  7. Y. Nakamura, R. Katsuki, T. Yokomori, et al., “Combustion Characteristics of Methane Hydrate in a Laminar Boundary Layer," Energy Fuels 23 (3), 1445–1449 (2009); DOI: 10.1021/ef800814f.

    Article  Google Scholar 

  8. Y. Maruyama, M. J. Fuse, T. Yokomori, et al., “Experimental Investigation of Flame Spreading over Pure Methane Hydrate in a Laminar Boundary Layer," Proc. Combust. Inst. 34 (2), 2131–2138 (2013); DOI: 10.1016/j.proci.2012.06.179.

    Article  Google Scholar 

  9. G. Cui, Z. Dong, K. Xie, et al., “Experimental Study on the Effect of Airflow Conditions on the Combustion Characteristics of Methane Hydrate," Fuel 300, 120926 (2021); DOI: 10.1016/j.fuel.2021.120926.

    Article  Google Scholar 

  10. T. Yoshioka, M. Suemitsu, T. Yokomori, et al., “Flame Propagation over a Methane Hydrate with Surface Temperature Variation in a Natural Convective Flow Field," Mech. Eng. Lett. 1 (2015); DOI: 10.1299/mel.15-00370.

    Article  Google Scholar 

  11. S. Y. Misyura, “Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation," Energy 181, 589–602 (2019); DOI: 10.1016/j.energy.2019.05.177.

    Article  Google Scholar 

  12. S. Y. Misyura, “Comparing the Dissociation Kinetics of Various Gas Hydrates During Combustion: Assessment of Key Factors to Improve Combustion Efficiency," Appl. Energy 270, 115042 (2020); DOI: 10.1016/j.apenergy.2020.115042.

    Article  Google Scholar 

  13. S. Y. Misyura and I. G. Donskoy, “Dissociation of Gas Hydrate for a Single Particle and for a Thick Layer of Particles: The Effect of Self-Preservation on the Dissociation Kinetics of the Gas Hydrate Layer," Fuel 314, 122759 (2022); DOI: 10.1016/j.fuel.2021.122759.

    Article  Google Scholar 

  14. G. Cui, Z. Dong, S. Wang, et al., “Effect of the Water on the Flame Characteristics of Methane Hydrate Combustion," Appl. Energy 259, 114205 (2020); DOI: 10.1016/j.apenergy.2019.114205.

    Article  Google Scholar 

  15. T. Yoshioka, Y. Yamamoto, T. Yokomori, et al., “Experimental Study on Combustion of a Methane Hydrate Sphere," Exp. Fluids 56 (10), Article No. 192 (2015); DOI: 10.1007/s00348-015-2041-4.

  16. M. Roshandell, J. Santacana-Vall, S. Karnani, et al., “Burning Ice Direct Combustion of Methane Clathrates," Combust. Sci. Technol. 188 (11/12), 2137–2148 (2016); DOI: 10.1080/00102202.2016.1211874.

    Article  Google Scholar 

  17. F. H. Wu, R. E. Padilla, D. Dunn-Rankin, et al., “Thermal Structure of Methane Hydrate Fueled Flames," Proc. Combust. Inst. 36 (3), 4391–4398 (2017); DOI: 10.1016/j.proci.2016.06.012.

    Article  Google Scholar 

  18. S. Y. Misyura, A. Yu. Manakov, G. S. Nyashina, et al., “Gas Hydrate Combustion in Five Method of Combustion Organization," Entropy 22 (7), 710 (2020); DOI: 10.3390/e22070710.

    Article  ADS  Google Scholar 

  19. T. Bar-Kohany and W. A. Sirignano, “Transient Combustion of a Methane-Hydrate Sphere," Combust. Flame 163, 284–300 (2016); DOI: 10.1016/j.combustflame.2015.10.004.

    Article  Google Scholar 

  20. Y. Dagan and T. Bar-Kohany, “Flame Propagation Through Three-Phase Methane-Hydrate Particles," Combust. Flame 193, 25–35 (2018); DOI: 10.1016/j.combustflame.2018.02.026.

    Article  Google Scholar 

  21. S. Y. Misyura and I. G. Donskoy, “Dissociation of Natural and Artificial Gas Hydrate," Chem. Eng. Sci. 148, 65–77 (2016); DOI: 10.1016/j.ces.2016.03.021.

    Article  Google Scholar 

  22. S. Y. Misyura and I. G. Donskoy, “Methane Hydrate Combustion by Using Different Granules Composition," Fuel Process. Technol. 158, 154–162 (2017); DOI: 10.1016/j.fuproc.2016.12.021.

    Article  Google Scholar 

  23. O. S. Gaydukova, S. Y. Misyura, and P. A. Strizhak, “Investigating Regularities of Gas Hydrate Ignition on a Heated Surface: Experiments and Modelling," Combust. Flame 228, 78–88 (2021); DOI: 10.1016/j.combustflame.2021.01.028.

    Article  Google Scholar 

  24. A. S. Chiglintseva, I. K. Gimaltdinov, I. M. Bayanov, and M. V. Stolpovsky, “Modeling of the Combustion Process of Methane Hydrate Taking into Account the Kinetics of the Decomposition Process," J. Phys.: Conf. Ser. 2094, 022053 (2021); DOI: 10.1088/1742-6596/2094/2/022053.

    Article  Google Scholar 

  25. S. Y. Misyura and I. G. Donskoy, “Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies 14 (16), 4855 (2021); DOI: 10.3390/en14164855.

    Article  Google Scholar 

  26. S. Y. Misyura, I. G. Donskoy, A. Y. Manakov, et al., “Studying the Influence of Key Parameters on the Methane Hydrate Dissociation in Order to Improve the Storage Efficiency," J. Energy Storage 44A 103288 (2021); DOI: 10.1016/j.est.2021.103288.

    Article  Google Scholar 

  27. H. C. Kim, P. R. Bishnoi, R. A. Heidemann, and S. S. H. Rizvi, “Kinetics of Methane Hydrate Decomposition," Chem. Eng. Sci. 42 (7), 1645–1653 (1987).

    Article  Google Scholar 

  28. V. A. Vlasov, “Diffusion Model of Gas Hydrate Dissociation into Ice and Gas that Takes into Account the Ice Microstructure," Chem. Eng. Sci. 215, 115443 (2020); DOI: 10.1016/j.ces.2019.115443.

    Article  Google Scholar 

  29. I. G. Donskoy and S. Ya. Misyura, “Non-Isothermal Kinetic Model of the Methane Hydrate Dissociation Process at Temperatures below Ice Melting Point," Energy Systems Res. 3 (1), 27–42 (2020); DOI: 10.38028/esr.2020.01.0003.

    Article  Google Scholar 

  30. S. Y. Misyura and I. G. Donskoy, “Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition," Fuel 262, 116614 (2020); DOI: 10.1016/j.fuel.2019.116614.

    Article  Google Scholar 

  31. M. E. Aerov, O. M. Todes, and D. A. Narinsky, Devices with Stationary Packed Beds (Khimiya, Leningrad, 1979) [in Russian].

    Google Scholar 

  32. A. Yu. Snegirev, “Perfectly Stirred Reactor Model to Evaluate Extinction of Diffusion Flame," Combust. Flame 162 (10), 3622–3631 (2015); DOI: 10.1016/j.combustflame.2015.06.019.

    Article  Google Scholar 

  33. V. Balakotaiah and D. Luss, “Multiplicity Features of Reacting Systems: Dependence of the Steady-States of a CSTR on the Residence Time," Chem. Eng. Sci. 38 (10), 1709–1721 (1983); DOI: 10.1016/0009-2509(83)85028-3.

    Article  Google Scholar 

  34. Y. Ju, H. Guo, F. Liu, and K. Maruta, “Effects of the Lewis Number and Radiative Heat Loss on the Bifurcation and Extinction of CH4/O2–N2–He Flames," J. Fluid Mech. 379, 165–190 (1999); DOI: 10.1017/S0022112098003231.

    Article  ADS  Google Scholar 

  35. S. Lee, R. Padilla, D. Dunn-Rankin, et al., “Extinction Limits and Structure of Counterflow Nonpremixed H2O-laden CH4/Air Flames," Energy 93, Pt. 1, 442–450 (2015); DOI: 10.1016/j.energy.2015.09.047.

    Article  Google Scholar 

  36. Theoretical Foundations of Heat Engineering. Thermotechnical Experiment: Reference Book, Ed. by V. A. Grigor’ev and V. M. Zorin (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  37. V. Hlaváček and P. Van Rompay, “On the Birth and Death of Isolas," Chem. Eng. Sci. 36 (10), 1730–1731 (1981); DOI: 10.1016/0009-2509(81)80019-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Donskoy.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 52-62.https://doi.org/10.15372/FGV20220406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donskoy, I.G., Misyura, S.Y. Experimental and Theoretical Study of Diffusion Combustion of Methane above a Gas Hydrate Layer in a Laminar Air Flow. Combust Explos Shock Waves 58, 440–449 (2022). https://doi.org/10.1134/S0010508222040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222040062

Keywords

Navigation