Skip to main content
Log in

Soot Formation in Ethylene Pyrolysis with Furan and Tetrahydrofuran Additives

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Effect of furan (C4H4O) and tetrahydrofuran (C4H8O) additives in a mixture of ethylene (C2H4) with argon on soot formation during pyrolysis behind reflected shock waves in a pressure range \(p_{5}\) = 2.1–4.4 atm and a temperature range \(T_{5}\) = 1600–2580 K is studied. Temperature dependences for the volume fraction of the condensed phase and the sizes of forming carbon nanoparticles in the studied mixtures are obtained by laser extinction and laser-induced incandescence. It is revealed that adding these furans increases the volume fraction of soot and expands the temperature range of its formation. The effect of furan turns out to be more pronounced than that of tetrahydrofuran. It is shown by the kinetic modeling of ethylene pyrolysis processes with the selected additives that alternative pathways for the production of C3H3 propargyl are formed in the presence of C4H4O and C4H8O, which is the reason why soot formation improves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. J. Harish, A. Chilvers, and A. Azapagic, “Environmental Sustainability of Biofuels: A Review," Proc. R. Soc. A 476, 20200351 (2020); DOI: 10.1098/rspa.2020.0351.

    Article  Google Scholar 

  2. R. Ganesan, S. Manigandan, S. Melvin, et al., “A Review on Prospective Production of Biofuel from Microalgae," Biotech. Rep. 27, e00509 (2020); DOI: 10.1016/j.btre.2020.e00509.

    Article  Google Scholar 

  3. H. Alalwan, A. Alminshid, and H. Aljaafari, “Promising Evolution of Biofuel Generations. Subject Review," Renew. Energ. Focus 28, 127–139 (2019); DOI: 10.1016/j.ref.2018.12.006.

    Article  Google Scholar 

  4. M. Bicker, J. Hirth, and H. Vogel, “Dehydration of Fructose to 5-hydroxymethylfurfural in Sub- and Supercritical Acetone," Green Chem. 5 (2), 280–284 (2003); DOI: 10.1039/B211468B.

    Article  Google Scholar 

  5. L. Dai, R. Liu, and C. Si, “A Novel Functional Lignin-Based Filler for Pyrolysis and Feedstock Recycling of Poly(l-lactide)," Green Chem. 20 (8), 1777–1783 (2018); DOI: 10.1039/C7GC03863A.

    Article  Google Scholar 

  6. X. Li et al., “Production of 5-hydroxymethylfurfural and Levulinic Acid from Lignocellulosic Biomass and Catalytic Upgradation," Ind. Crop. Prod. 130, 184–197 (2019); DOI: 10.1016/j.indcrop.2018.12.082.

    Article  Google Scholar 

  7. H. Wang et al., “Recent Advances in Catalytic Conversion of Biomass to 5-Hydroxymethylfurfural and 2,5-dimethylfuran," Renew. Sustain. Energy Rev. 103, 227–247 (2019); DOI: 10.1016/j.rser.2018.12.010.

    Article  Google Scholar 

  8. A. Bayu, A. Abudula, and G. Guan, “Reaction Pathways and Selectivity in Chemo-Catalytic Conversion of Biomass-Derived Carbohydrates to High-Value Chemicals: A Review," Fuel Process. Technol. 196, 106162 (2019); DOI: 10.1016/j.fuproc.2019.106162.

    Article  Google Scholar 

  9. K. Tokimatsu, R. Yasuoka, and M. Nishio, “Global Zero Emissions Scenarios: The Role of Biomass Energy with Carbon Capture and Storage by Forested Land Use," Appl. Energy 185 (2), 1899–1906 (2017); DOI: 10.1016/j.apenergy.2015.11.077.

    Article  Google Scholar 

  10. A. K. Hailey, J. S. Meerman, E. D. Larson, and Y.-L. Loo, “Low-Carbon “Drop-In Replacement" Transportation Fuels from Non-Food Biomass and Natural Gas," Appl. Energy 183, 1722–1730 (2016); DOI: 10.1016/j.apenergy.2016.09.068.

    Article  Google Scholar 

  11. L. S. Tran et al., “Progress in Detailed Kinetic Modeling of the Combustion of Oxygenated Components of Biofuels," Energy 43 (1), 4–18 (2012); DOI: 10.1016/j.energy.2011.11.013.

    Article  Google Scholar 

  12. J.-P. Lange, E. Heide, and J. Buijtenen, and R. Price, “Furfural—a Promising Platform for Lignocellulosic Biofuels," ChemSusChem. 5 (1), 150–166 (2012); DOI: 10.1002/cssc.201100648.

    Article  Google Scholar 

  13. A. Attar and G. Hendrickson, Coal Structure, Ed. by R. A. Meyers (Academic Press, New York, 1982).

    Google Scholar 

  14. C. Li et al., “Tailored One-Pot Production of Furan-Based Fuels from Fructose in an Ionic Liquid Biphasic Solvent System," Chin. J. Catal. 36 (9), 1638–1646 (2015); DOI: 10.1016/S1872-2067(15)60927-5.

    Article  Google Scholar 

  15. Y. Qian, L. Zhu, Y. Wang, and X. Lu, “Recent Progress in the Development of Biofuel 2,5-dimethylfuran," Renew. Sustain. Energy Rev. 41, 633–646 (2015); DOI: 10.1016/j.rser.2014.08.085.

    Article  Google Scholar 

  16. S. Jȩżak, M. Dzida, M. Zorȩbski, “High Pressure Physicochemical Properties of 2-methylfuran and 2,5-dimethylfuran—Second Generation Biofuels," Fuel 184, 334–343 (2016); DOI: 10.1016/j.fuel.2016.07.025.

    Article  Google Scholar 

  17. M. H. Hakka, P.-A. Glaude, O. Herbinet, and F. Battin-Leclerc, “Experimental Study of the Oxidation of Large Surrogates for Diesel and Biodiesel Fuels," Combust. Flame 156 (11), 2129–2144 (2009); DOI: 10.1016/j.combustflame.2009.06.003.

    Article  Google Scholar 

  18. M. Verdicchio, B. Sirjean, L. S. Tran, et al., ‘Unimolecular Decomposition of Tetrahydrofuran: Carbene vs. Diradical Pathways," Proc. Combust. Inst. 35 (1), 533–541 (2015); DOI: 10.1016/j.proci.2014.08.015.

    Article  Google Scholar 

  19. J. M. Simmie, “Kinetics and Thermochemistry of 2,5-dimethyltetrahydrofuran and Related Oxolanes: Next Next-Generation Biofuels," J. Phys. Chem. A 116 (18), 4528–4538 (2012); DOI: 10.1021/jp301870w.

    Article  ADS  Google Scholar 

  20. Sh. Zhong, R. Daniel, H. Xu, et al., “Combustion and Emissions of 2,5-dimethylfuran in a Direct-Injection Spark-Ignition Engine," Energy Fuels 24 (5), 2891–2899 (2010); DOI: 10.1021/ef901575a.

    Article  Google Scholar 

  21. R. Daniel, H. Xu, Ch. Wang, D. Richardson, and Sh. Shuai, “Combustion Performance of 2,5-dimethylfuran Blends using Dual-Injection Compared to Direct-Injection in a SI Engine," Appl. Energy 98, 59–68 (2012); DOI: 10.1016/j.apenergy.2012.02.073.

    Article  Google Scholar 

  22. X. Ma, Ch. Jiang, H. Xu, et al., “Laminar Burning Characteristics of 2-methylfuran and Isooctane Blend Fuels," Fuel 116, 281–291 (2014); DOI: 10.1016/j.fuel.2013.08.018.

    Article  Google Scholar 

  23. M. Pan, G. Shu, J. Pan, et al., “Performance Comparison of 2-methylfuran and Gasoline on a Spark-Ignition Engine with Cooled Exhaust Gas Recirculation," Fuel 132, 36–43 (2014); DOI: 10.1016/j.fuel.2014.04.054.

    Article  Google Scholar 

  24. M. Thewes, M. Muether, S. Pischinger, et al., “Analysis of the Impact of 2-methylfuran on Mixture Formation and Combustion in a Direct-Injection Spark-Ignition Engine," Energy Fuels 25 (12), 5549–5561 (2011); DOI: 10.1021/ef201021a.

    Article  Google Scholar 

  25. C. Togbé, L.-S. Tran, D. Liu, et al., “Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography. Part III: 2,5-dimethylfuran," Combust. Flame 161 (3), 780–797 (2014); DOI: 10.1016/j.combustflame.2013.05.026.

    Article  Google Scholar 

  26. M. Djokic, H.-H. Carstensen, K. M. van Geem, and G. B. Marin, “The Thermal Decomposition of 2,5-dimethylfuran," Proc. Combust. Inst. 34 (1), 251–258 (2013); DOI: 10.1016/j.proci.2012.05.066.

    Article  Google Scholar 

  27. M. Frenklach, D. W. Clary, W. C. Gardiner, and S. E. Stein, Jr., “Effect of Fuel Structure on Pathways to Soot," Symp. (Int.) Combust. 21 (1), 1067–1076 (1988); DOI: 10.1016/S0082-0784(88)80337-0.

    Article  Google Scholar 

  28. St. Bauerle, Y. Karasevich, St. Slavov, et al., “Soot Formation at Elevated Pressures and Carbon Concentrations in Hydrocarbon Pyrolysis," Symp. (Int.) Combust. 25 (1), 627–634 (1994); DOI: 10.1016/S0082-0784(06)80694-6.

    Article  Google Scholar 

  29. S. De Iuliis, N. Chaumeix, M. Idir, and C.-E. Paillard, “Scattering/Extinction Measurements of Soot Formation in a Shock Tube," Exp. Therm. Fluid Sci. 32 (7), 1354–1362 (2008); DOI: 10.1016/j.expthermflusci.2007.11.008.

    Article  Google Scholar 

  30. G. L. Agafonov, I. V. Bilera, P. A. Vlasov, et al., “Unified Kinetic Model of Soot Formation in the Pyrolysis and Oxidation of Aliphatic and Aromatic Hydrocarbons in Shock Waves," Kinet. Catal. 57, 557–572 (2016); DOI: 10.1134/S0023158416050013.

    Article  Google Scholar 

  31. A. Lifshitz, M. Bidani, and Sh. Bidani, “Thermal Reactions of Cyclic Ethers at High Temperatures. 3. Pyrolysis of Furan Behind Reflected Shocks," J. Phys. Chem. 90 (21), 5373–5377 (1986); DOI: 10.1021/j100412a096.

    Article  Google Scholar 

  32. Ph. P. Organ and J. C. Mackie, “Kinetics of Pyrolysis of Furan," J. Chem. Soc., Faraday Trans. 87, 815–823 (1991); DOI: 10.1039/FT9918700815.

    Article  Google Scholar 

  33. D. Fulle, A. Dib, J. H. Kiefer, et al., “Pyrolysis of Furan at Low Pressures: Vibrational Relaxation, Unimolecular Dissociation, and Incubation Times," J. Phys. Chem. A 102 (38), 7480–7486 (1998); DOI: 10.1021/jp9823042.

    Article  ADS  Google Scholar 

  34. Z. Cheng, Y. Tan, L. Wei, et al., “Experimental and Kinetic Modeling Studies of Furan Pyrolysis: Fuel Decomposition and Aromatic Ring Formation," Fuel 206, 239–247 (2017); DOI: 10.1016/j.fuel.2017.05.090.

    Article  Google Scholar 

  35. A. Lifshitz, M. Bidani, and Sh. Bidani, “Thermal Reactions of Cyclic Ethers at High Temperatures. Part 3. Pyrolysis of Tetrahydrofuran Behind Reflected Shocks," J. Phys. Chem. 90 (15), 3422–3429 (1986); DOI: 10.1021/j100406a024.

    Article  Google Scholar 

  36. P. Dagaut, M. McGuinness, J. M. Simmie, and M. Cathonnet, “The Ignition and Oxidation of Tetrahydrofuran: Experiments and Kinetic Modeling," Combust. Sci. Technol. 135 (1–6), 3–29 (1998); DOI: 10.1080/00102209808924147.

    Article  Google Scholar 

  37. E. J. Barrientos, M. Lapuerta, and A. L. Boehman, “Group Additivity in Soot Formation for the Example of C-5 Oxygenated Hydrocarbon Fuels," Combust. Flame 160 (8), 1484–1498 (2013); DOI: 10.1016/j.combustflame.2013.02.024.

    Article  Google Scholar 

  38. D. D. Das, P. C. St. John, Ch. S. McEnally, et al., “Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale," Combust. Flame 190, 349–364 (2018); DOI: 10.1016/j.combustflame.2017.12.005.

    Article  Google Scholar 

  39. R. Lemaire, G. Le Corre, and M. Nakouri, “Predicting the Propensity to Soot of Hydrocarbons and Oxygenated Molecules by Means of Structural Group Contribution Factors Derived from the Processing of Unified Sooting Indexes," Fuel 302, 121104 (2021); DOI: 10.1016/j.fuel.2021.121104.

    Article  Google Scholar 

  40. A. Eremin, E. Gurentsov, E. Popova, and A. Priemchenko, “Size Dependence of Complex Refractive Index Function of Growing Nanoparticles," Appl. Phys. B 104, 285–295 (2011); DOI: 10.1007/s00340-011-4420-8.

    Article  Google Scholar 

  41. K. J. Daun, “Thermal Accommodation Coefficients Between Polyatomic Gas Molecules and Soot in Laser-Induced Incandescence Experiments," Int. J. Heat Mass Transfer 52 (21–22), 5081–5089 (2009); DOI: 10.1016/j.ijheatmasstransfer.2009.05.006.

    Article  MATH  Google Scholar 

  42. A. V. Eremin, E. V. Gurentsov, and R. N. Kolotushkin, “The change of Soot Refractive Index Function Along the Height of Premixed Ethylene/Air Flame and Its Correlation with Soot Structure," Appl. Phys. B 126, 125 (2020); DOI: 10.1007/s00340-020-07426-3.

    Article  Google Scholar 

  43. A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, “OpenSMOKE++: An Object-Oriented Framework for the Numerical Modeling of Reactive Systems with Detailed Kinetic Mechanisms," Comput. Phys. Commun. 192, 237–264 (2015); DOI: 10.1016/j.cpc.2015.02.014.

    Article  ADS  MathSciNet  Google Scholar 

  44. E. Ranzi, A. Frassoldati, A. Stagni, et al., “Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels," Int. J. Chem. Kinet. 46 (9), 512–542 (2014); DOI: 10.1002/kin.20867.

    Article  Google Scholar 

  45. E. Ranzi, C. Cavallotti, A. Cuoci, et al., “New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes," Combust. Flame 162 (5), 1679–1691 (2015); DOI: 10.1016/j.combustflame.2014.11.030.

    Article  Google Scholar 

  46. W. Pejpichestakul, E. Ranzi, M. Pelucchi, et al., “Examination of a Soot Model in Premixed Laminar Flames at Fuel-Rich Conditions," Proc. Combust. Inst. 37 (1), 1013–1021 (2019); DOI: 10.1016/j.proci.2018.06.104.

    Article  Google Scholar 

  47. Y. Wu, N. Xu, M. Yang, et al., “Ignition Delay Time Measurement and Kinetic Modeling of Furan, and Comparative Studies of 2,3-dihydrofuran and Tetrahydrofuran at Low to Intermediate Temperatures by Using a Rapid Compression Machine," Combust. Flame 213, 226–236 (2020); DOI: 10.1016/j.combustflame.2019.12.010.

    Article  Google Scholar 

  48. Ch. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati, E. Ranzi, H. Wang, and T. Faravelli, “Kinetic Modeling of Particle Size Distribution of Soot in a Premixed Burner-Stabilized Stagnation Ethylene Flame," Combust. Flame 162 (9), 3356–3369 (2015); DOI: 10.1016/j.combustflame.2015.06.002.

    Article  Google Scholar 

  49. A. Emelianov, A. Eremin, A. Makeich, et al., “Heat Release of Carbon Particle Formation from Hydrogen-Free Precursors Behind Shock Waves," Proc. Combust. Inst. 31 (1), 649–656 (2007); DOI: 10.1016/j.proci.2006.07.063.

    Article  Google Scholar 

  50. A. Eremin, E. Gurentsov, and E. Mikheyeva, “Experimental Study of Temperature Influence on Carbon Particle Formation in Shock Wave Pyrolysis of Benzene and Benzene-Ethanol Mixtures," Combust. Flame 162 (1), 207–215 (2015); DOI: 10.1016/j.combustflame.2014.09.015.

    Article  Google Scholar 

  51. J. H. Kiefer, S. Kapsalis, M. Z. Al-Alami, and K. A. Budach, “The Very High Temperature Pyrolysis of Ethylene and the Subsequent Reactions of Product Acetylene," Combust. Flame 51, 79–93 (1983); DOI: 10.1016/0010-2180(83)90085-8.

    Article  Google Scholar 

  52. H. Richter and J. B. Howard, “Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways," Prog. Energy Combust. Sci. 26 (4–6), 565–608 (2000); DOI: 10.1016/S0360-1285(00)00009-5.

    Article  Google Scholar 

  53. A. Vasiliou, M. R. Nimlos, J. W. Daily, and G. B. Ellison, “Thermal Decomposition of Furan Generates Propargyl Radicals," J. Phys. Chem. A 113 (30), 8540–8547 (2009); DOI: 10.1021/jp903401h.

    Article  ADS  Google Scholar 

  54. Ch. H. Klute and W. D. Walters, “The Thermal Decomposition of Tetrahydrofuran," J. Am. Chem. Soc. 68 (3), 506–511 (1946); DOI: 10.1021/ja01207a045.

    Article  Google Scholar 

  55. W. Sun, A. Hamadi, S. Abid, et al., “A Comprehensive Kinetic Study on the Speciation from Propylene and Propyne Pyrolysis in a Single-Pulse Shock Tube," Combust. Flame 231, 111485 (2021); DOI: 10.1016/j.combustflame.2021.111485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Korshunova.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 41-51.https://doi.org/10.15372/FGV20220405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakon, A.V., Eremin, A.V., Korshunova, M.R. et al. Soot Formation in Ethylene Pyrolysis with Furan and Tetrahydrofuran Additives. Combust Explos Shock Waves 58, 430–439 (2022). https://doi.org/10.1134/S0010508222040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222040050

Keywords

Navigation