Skip to main content
Log in

Overcompression of Spherically Converging Detonation in Plastic-Bonded TATB

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Detonation overcompression during detonation convergence in a hemispherical charge of plastic-bonded triaminotrinitrobenzene with outer and inner radii of 75 and 20 mm after its initiation along the outer surface is studied. The experiment is numerically simulated with account for the transformation kinetics of an explosive into explosion products. The overcompressed detonation parameters in the explosive under study at a diagnosable charge radius of 20 mm are obtained via experiments and calculations: in the profile maximum, the pressure is 70 GPa, the front velocity is 9.45 km/s, and the mass velocity behind the front is 3.88 km/s. The overcompression achieved in the experiment under consideration is 2.3. The adiabat intersection point of the “nonreacting" explosive and its explosion products is revealed, which is implemented at a radius of 31 mm and a pressure of 52 GPa. The corresponding front velocity and the mass velocity behind the front at this point are 8.55 and 3.18 km/s. The resulting parameters at the adiabat intersection point are compared with the available literature data for triaminotrinitrobenzene and compositions based on it. A fairly large scatter of data is revealed. Suggestions are made about the causes of the scatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For brevity, the explosives–LiF contact surface is mentioned with no regard for the presence of a thin aluminum coating on the LiF surface.

REFERENCES

  1. R. K. Jackson and L. G. Green, R. Barlett, et al., “Initiation and Transition Regularities in TATB," in Proc. 6th Symp. (Int.) on Detonation, Coronado, California, USA, August 24–27, 1976.

  2. S. A. Sheffield, D. D. Bloomquist, and C. M. Tarver, “Subnanosecond Measurements of Detonation Fronts in Solid High Explosives," J. Chem. Phys. 80 (8), 3831–3844 (1984); DOI: 10.1063/1.447164.

    Article  ADS  Google Scholar 

  3. J. J. Dick, C. A. Forest, J. B. Ramsay, and W. L. Seitz, “The Hugoniot and Shock Sensitivity of a Plastic-Bonded TATB Explosive PBX 9502," J. Appl. Phys. 63 (10) (1988); DOI: 10.1063/1.340428.

    Article  ADS  Google Scholar 

  4. E. V. Shorokhov and B. V. Litvinov, “Impact Compressibility of Explosive Compositions Based on TATB in the Pressure Range from 0.1 to 40 GPa," Khim. Fiz. 12 (5), 722–723 (1993).

    Google Scholar 

  5. S. N. Lubyatinsky and B. G. Loboiko, “Detonation Reaction Zones of Solid Explosives," in Proc. 12th Symp. on Detonation, Snowmass, Colorado, USA, 1998.

  6. B. G. Loboiko and S. N. Lubyatinsky, “Reaction Zones of Detonating Solid Explosives," Fiz. Goreniya Vzryva 36 (6), 45–64 (2000) [Combust., Expl., Shock Waves 36 (6), 716–733 (2000)].

    Article  Google Scholar 

  7. A. V. Fedorov, “Parameters of the von Neumann Peak and Detonation Wave Front Structure in Condensed High Explosives," Khim. Fiz. 24 (10), 13–21 (2005).

    Google Scholar 

  8. A. V. Fedorov, A. L. Mikhailov, L. L. Antonyuk, et al., “Determination of the Chemical Reaction Zone Parameters and the States of the Neumann and Chapman–Jouguet Peaks in Homogeneous and Heterogeneous Explosives," in Zababakhin Scientific Readings, XII Internaltional Conference (All-Russian Sci. Research Inst. of Tech. Phys., Snezhinsk, 2012).

  9. E. A. Kozlov, V. I. Tarzhanov, I. V. Telichko, et al., “Structure of the Reaction Zone of Detonating Fine-Grained TATB. Experiment," in Shock Waves in Condensed Substance: Proc. of the Int. Conf., Kiev, Ukraine, September 16–21, 2012 (Interpress LTD, Kiev, 2012).

  10. Yu. A. Aminov, A. V. Vershinin, N. S. Es’kov, et al., “Modified Detonation Macrokinetics Model of a TATB-Based Explosive," Fiz. Goreniya Vzryva 33 (1), 94–97 (1997) [Combust., Expl., Shock Waves 33 (1), 77–80 (1997)].

    Article  Google Scholar 

  11. Physical Models of Detonation of Heterogeneous Crystalline Explosives, Ed. by K. F. Grebenkin (VNIITF, Snezhinsk, 2017) [in Russian].

    Google Scholar 

  12. Yu. A. Aminov, M. M. Gorshkov, V. T. Zaikin, et al., “Deceleration of Detonation Products of a TATB-Based High Explosive," Fiz. Goreniya Vzryva 38 (2), 121–124 (2002) [Combust., Expl., Shock Waves 38 (2), 235–238 (2002)].

    Article  Google Scholar 

  13. V. B. Aivazov and Ya. B. Zel’dovich, “Formation of an Overcompressed Detonation Wave in a Conical Pipe," Zh. Eksp. Teor. Fiz. 17 (10), 888–900 (1947).

  14. E. I. Zababakhin, Some Issues of Explosion Gas-Dynamics (VNIITF, Snezhinsk, 1997) [in Russian].

    Google Scholar 

  15. L. V. Al’tshuler, R. F. Trunin, K. K. Krupnikov, and N. V. Panov, “Explosive Laboratory Devices for Shock Wave Compression Studies," Usp. Fiz. Nauk 166 (5), 575–581 (1996) [Phys.-Usp. 39 (5), 539–544 (1996)]; DOI: 10.3367/UFNr.0166.199605f.0575.

    Article  Google Scholar 

  16. L. V. Al’tshuler, K. K. Krupnikov, and M. I. Brazhnik, “Dynamic Compressibility of Metals Under Pressures from 400,000 to 4,000,000 Atmospheres," Zh. Eksp. Teor. Fiz. 34 (4), 874–885 (1958) [J. Exp. Theor. Phys. (U.S.S.R.) 34, 886–893 (1958)].

  17. Ya. B. Zel’dovich and A. S. Kompaneets, Theory of Detonation (Gos. Izd. Tekh.-Teor. Lit., moscow, 1955; Academic Press, 1960).

    Google Scholar 

  18. E. A. Kozlov, V. I. Tarzhanov, I. V. Telichko, et al., “TATB Reaction Zone Structure in the Cases of Normal and Overcompressed Detonation," in Proc. of the XV Kharitonov Thematic Sci. Readings (All-Russian Sci. Research Inst. of Tech. Phys., Snezhinsk, 2013).

  19. L. G. Green, C. M. Tarver, and D. J. Erskine, “Reaction Zone Structure in Supracompressed Detonating Explosives," in Proc. 9th Symp. (Int.) on Detonation, Portland, Oregon, USA, Aug. 27, September 1, 1989.

  20. P. K. Tang, W. W. Anderson, J. E. Fritz, et al., “A Study of the Overdriven Behaviors of PBX 9501 and PBX 9502," in Proc. 12th Symp. (Int.) on Detonation, San Diego, August 11–16, 2002.

  21. C. F. McMillan, D. R. Goosman, N. L. Parker, et al., “Velocimetry of Fast Surfaces Using Fabry–Pérot Interferometry," Rev. Sci. Instrum. 59 (1) (1988); DOI: 10.1063/1.1140014.

    Article  ADS  Google Scholar 

  22. O. T. Strand, D. R. Goosman, C. Martinez, et al., “A Novel System for High-Speed Velocimetry Using Heterodyne Techniques," Rev. Sci. Instr. 77, 083108 (2006).

    Article  ADS  Google Scholar 

  23. V. I. Tarzhanov, “The Deceleration Curve of the von Neumann Spike Is the New Feature of Detonating Explosives," Fiz. Goreniya Vzryva 56 (6), 133–134 (2020) [Combust., Expl., Shock Waves 56 (6), 741–742 (2020); DOI: 10.1134/S0010508220060143].

    Article  Google Scholar 

  24. V. I. Tarzhanov, A. V. Vorob’ev, D. P. Kuchkov, et al., “Deceleration Curve of a Chemical Peak of Detonating Plastic-Bonded TATB," Gorenie Vzryv 13 (3), 114–124 (2020); DOI: 10.30826/CE20130311.

    Article  Google Scholar 

  25. J. E. Vorthman and R. S. Hixson, W. W. Anderson, et al., “Release Isentropes in overdriven PBX 9502," AIP Conf. Proc. 505 (1), 223–226 (2000); DOI: 10.1063/1.1303461.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tarzhanov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 3, pp. 148-154.https://doi.org/10.15372/FGV20220316.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarzhanov, V.I., Petrov, D.V., Garmashev, A.Y. et al. Overcompression of Spherically Converging Detonation in Plastic-Bonded TATB. Combust Explos Shock Waves 58, 389–395 (2022). https://doi.org/10.1134/S0010508222030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222030169

Keywords

Navigation