Skip to main content
Log in

Macrokinetics of Combustion of Powder and Granular Titanium Mixtures with Different Allotropic Forms of Carbon

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Even a slight change in the content of impurity gases during a self-propagating high-temperature synthesis can lead to a change in the combustion regime and the characteristics of the target products. In this work, the dependence of the burning rate of Ti + C granular mixtures on a titanium particle size is determined for the first time, and the effect of impurity gas evolution when using various allotropic modifications of carbon (graphite/soot) is studied. Experimental results are analyzed using the convective–conductive combustion model, which explains the strong influence of impurity gas release on the front velocity. Interaction rate of the components becomes a key factor for granular mixtures in which the influence of impurity gases is leveled. Experiments show that the burning rates of granular mixtures of titanium with soot are noticeably higher than the burning rates of a mixture of titanium with graphite. The curves approximating the dependence of the burning rate of a granular mixture of titanium and graphite on the size of titanium particles correspond to the linear law of interaction of the initial components. The interaction in a mixture of titanium and soot occurs according to the parabolic law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. S. Rogachev and A. S. Mukasyan, Combustion for Material Synthesis (CRC Press Taylor & Francis Group, New York, 2015).

    Google Scholar 

  2. V. I. Vershinnikov and A. K. Filonenko, “Pressure Dependence of Rate of Gas-Free Combustion," Fiz. Goreniya Vzryva 14 (5), 42–47 (1978) [Combust., Expl., Shock Waves 14 (5), 588–592 (1978)].

    Article  Google Scholar 

  3. L. J. Kecskes and A. Niiler, “Impurities in the Combustion Synthesis of Titanium Carbide," J. Am. Ceram. Soc. 72 (4), 655–661 (1989); DOI: 10.1111/j.1151-2916.1989.tb06190.x.

    Article  Google Scholar 

  4. B. S. Seplyarskii, “Anomalous Dependence of Burning Rate of Gasless Systems on Diameter," Dokl. Akad. Nauk 396 (5), 640–643 (2004).

  5. S. G. Vadchenko, “Effect of Thermal Treatment in Vacuum on Ignition of Titanium Compacts in Hydrogen," Int. J. Self-Propag. High-Temp. Synth. 19 (3), 206–208 (2010); DOI: 10.3103/S1061386210030064.

    Article  Google Scholar 

  6. S. G. Vadchenko, “Effects of Obstacles on the Passage of Filtering Combustion Waves along a Porous Titanium Tape," Fiz. Goreniya Vzryva 55 (3), 43–49 (2019) [Combust., Expl., Shock Waves 55 (3), 282–288 (2019); DOI: 10.1134/S0010508219030055].

    Article  Google Scholar 

  7. B. S. Seplyarskii and R. A. Kochetkov, “Granulation As a Tool for Stabilization of SHS Reactions," Int. J. Self-Propag. High-Temp. Synth. 26 (2), 134–136 (2017); DOI: 10.3103/S106138621702011X.

    Article  Google Scholar 

  8. B. S. Seplyarsky, A. G. Tarasov, R. A. Kochetkov, and I. D. Kovalev, “Combustion Behavior of a Ti + TiC Mixture in a Nitrogen Coflow," Fiz. Goreniya Vzryva 50 (3), 61–67 (2014) [Combust., Expl., Shock Waves 50 (3), 300–305 (2014)].

    Article  Google Scholar 

  9. A. P. Amosov, A. G. Makarenko, A. R. Samboruk, et al., “Effect of Batch Pelletizing on a Course of SHS Reactions: An Overview," Int. J. Self-Propag. High-Temp. Synth. 19 (1), 70–77 (2010); DOI: 10.3103/S1061386210010127.

    Article  Google Scholar 

  10. B. S. Seplyarskii and R. A. Kochetkov, “A Study of the Characteristics of the Combustion of Ti + \(x\)C (\(x > 0.5\)) Powder and Granular Compositions in a Gas Coflow," Khim. Fiz. 36 (9), 23–31 (2017) [Russ. J. Phys. Chem. B 11, 798–807 (2017)]; DOI: 10.7868/S0207401X17090126.

    Google Scholar 

  11. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, et al., “Phase Composition and Structure of Titanium Carbide/Nickel Binder Synthesis Products," Neorg. Mater. 55 (11), 1169–1175 (2019) [Inorg. Mater. 55 (11), 1104–1110 (2019)]; DOI: 10.1134/S0002337X19110113.

    Article  Google Scholar 

  12. S. Vorotilo, Ph. V. Kiryukhantsev-Korneev, B. S. Seplyarskii, et al., “(Ti,Cr)C-Based Cermets with Varied NiCr Binder Content via Elemental SHS for Perspective Cutting Tools," Crystals 10, 412–428 (2020); DOI: 10.3390/cryst10050412.

    Article  Google Scholar 

  13. A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, “Thermal Wave Structure in SHS Processes by the Example of Boride Synthesis," Fiz. Goreniya Vzryva 17 (1), 79–90 (1981) [Combust., Expl., Shock Waves 17 (1), 63–71 (1981)].

    Article  Google Scholar 

  14. T. Šlȩzak, J. Zmywaczyk, and P. Koniorczyk, “Thermal Diffusivity Investigations of the Titanium Grade 1 in Wide Temperature Range," AIP Conf. Proc. 2170 (1), 020019 (2019); DOI: 10.1063/1.5132738.

  15. S. V. Stankus et al., “Thermophysical Properties of MPG-6 Graphite," Teplofiz. Vys. Temp. 51 (2), 205–209 (2013) [High Temp. 51 (2), 179–182 (2013)].

    Article  Google Scholar 

  16. I. A. Korol’chenko, A. V. Kazakov, A. S. Kukhtin, and V. L. Krylov, “Experimental Determination of Thermal Diffusivity of Materials," Pozharovzryvobezopasnost’ Veshchestv. Mater., No. 4, 36–38 (2021).

  17. A. P. Aldushin, T. M. Martem’yanova, A. G. Merzhanov, et al., “Propagation of the Front of an Exothermic Reaction in Condensed Mixtures with the Interaction of the Components through a Layer of High-Melting Product," Fiz. Goreniya Vzryva 8 (2), 202–212 (1972) [Combust., Expl., Shock Waves 8 (2), 159–167 (1972)].

    Article  Google Scholar 

  18. B. S. Seplyarskii, R. A. Kochetkov, and S. G. Vadchenko, “ Burning of the Ti + \(x\)C (\(1 > x > 0.5\)) Powder and Granulated Mixtures," Fiz. Goreniya Vzryva 52 (6), 51–59 (2016) [Combust., Expl., Shock Waves 52 (6), 51–59 (2016); DOI: 10.1134/S001050821606006X].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Seplyarskii.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 3, pp. 110-116.https://doi.org/10.15372/FGV20220311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G. et al. Macrokinetics of Combustion of Powder and Granular Titanium Mixtures with Different Allotropic Forms of Carbon. Combust Explos Shock Waves 58, 355–361 (2022). https://doi.org/10.1134/S001050822203011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822203011X

Keywords

Navigation