Skip to main content
Log in

Numerical Simulation of Heterogeneous Combustion of Axisymmetric Porous Objects under Forced Filtration and Natural Convection

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A numerical model for heterogeneous combustion of axisymmetric porous objects has been proposed which allows simulating processes under both forced filtration and natural convection. The influence of the location of the ignition zone on combustion in a cylindrical porous reactor has been investigated. It has been shown that under forced filtration, the process is similar to the plane case: the combustion wave moves upward and sideways from the ignition source, completely burning out the solid fuel, while the gas tends to bypass hot zones and flow through colder regions. Under natural convection conditions, as in the plane case, vortex gas flows arise in the vicinity of the combustion source at the initial time, which significantly affects the oxidizer supply to the reaction zone. The direction of combustion-wave propagation in the axisymmetric case may significantly differ from that in the plane case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. P. Aldushin and A. G. Merzhanov, Theory of Filtration Combustion: General Concept and the State of Research, in Propagation of Thermal Waves in Heterogeneous Media (Nauka, Novosibirsk, 1988), pp. 9–52 [in Russian].

    Google Scholar 

  2. A. M. Grishin, A. S. Yakimov, G. Rein, and A. Simeoni, “On the Physical and Mathematical Modeling of the Initiation and Spread of Peat Fires," Inzh.-Fiz. Zh. 82 (6), 1210–1217 (2009).

    Google Scholar 

  3. S. E. Page, F. Siegert, J. O. Rieley, H-D. V. Boehm, A. Jaya, and S. Limin, “The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997," Nature 420, 61–65, (2002); DOI: 10.1038/nature01131.

    Article  ADS  Google Scholar 

  4. G. Rein, S. Cohen, and A. Simeoni, “Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts," Proc. Combust. Inst. 32 (2), 2489–2496, (2009); DOI: 10.1016/j.proci.2008.07.008.

    Article  Google Scholar 

  5. G. Rein, N. Cleaver, C. Ashton, P. Pironi, and J. L. Torero, “The Severity of Smouldering Peat Fires and Damage to the Forest Soil," Catena 74 (3) 304–309 (2008); DOI: 10.1016/j.catena.2008.05.008.

    Article  Google Scholar 

  6. A. Yu. Zaichenko, D. N. Podlesnyi, M. V. Salganskaya, et al., “Dependence of Peat Ignition Time on Ignition Conditions with Natural Convection of the Oxidizer," Gorenie Vzryv 11 (3), 74–78 (2018).

  7. J. L. Torero, A. C. Fernandez-Pello, and M. Kitano, “Opposed Forced Flow Smoldering of Polyurethane Foam," Combust. Sci. Technol. 91 (1–3), pp. 95–117; DOI: 10.1080/00102209308907635.

    Article  Google Scholar 

  8. J. L. Torero and A. C. Fernandez-Pello, “Forward Smolder of Polyurethane Foam in a Forced Air Flow," Combust. Flame 106 (1/2), pp. 89–109 (1996); DOI: 10.1016/0010-2180(95)00245-6.

    Article  Google Scholar 

  9. R. Guillermo, A. C. Fernandez-Pello, and D. L. Urban, “Computational Model of Forward and Opposed Smoldering Combustion in Microgravity," Proc. Combust. Inst. 31 (2), 2677–2684 (2007); DOI: 10.1016/j.proci.2006.08.047.

    Article  Google Scholar 

  10. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, and N. I. Abzalov, “Effect of a Ti + C Granule Sizes on Combustion in a Nitrogen Flow," Fiz. Goreniya Vzryva 57 (1),"65–71 (2021); [Combust., Expl., Shock Waves 57 (1), 60–66 (2021); https://doi.org/10.1134/S001050822101007X].

    Article  Google Scholar 

  11. O. S. Rabinovich, A. I. Malinouski, V. M. Kislov, and E. A. Salgansky, “Effect of Thermo-Hydrodynamic Instability on Structure and Characteristics of Filtration Combustion Wave of Solid Fuel," Combust. Theory Model 20 (5), 877–893 (2016); DOI: 10.1080/13647830.2016.1190034.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. E. A. Salgansky, D. N. Podlesnyi, M. V. Tsvetkov, and A. Yu. Zaichenko, “Thermodynamic Evaluation of Mass Transfer of Rare Metal Compounds in a Filtration Combustion Wave," Zh. Prikl. Khim. 93 (7), 1058–1064 (2020).

    Google Scholar 

  13. V. A. Levin and N. A. Lutsenko, “Two-Dimensional Gas Flows in Heterogeneous Combustion of Solid Porous Media," Dokl. Akad. Nauk 476 (1), 30–34 (2017).

  14. N. A. Lutsenko, “Numerical Model of Two-Dimensional Heterogeneous Combustion in Porous Media under Natural Convection or Forced Filtration," Combust. Theory Model 22 (2), 359–377 (2018); DOI: 10.1080/13647830.2017.1406617.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N. A. Lutsenko, “Modeling of the Process of Extracting Valuable Metals from Metal-Containing Media by Filtration Combustion," Dokl. Akad. Nauk. Fizika, Tekh. Nauki 491 (1), 85–89 (2020).

  16. E. A. Salgansky, N. A. Lutsenko, and M. Toledo, “The Model of the Extraction Process of Rare Metals under Condition of Filtration Combustion Wave," Front. Chem. 8, Article No. 511502 (2020); DOI: 10.3389/fchem.2020.511502.

    Article  Google Scholar 

  17. E. A. Salgansky and N. A. Lutsenko, “Numerical Modeling of Heterogeneous Combustion with Phase Transitions in Porous Metal-Containing Media," Int. J. Multiphase Flow 140, 103670 (2021); DOI: 10.1016/j.ijmultiphaseflow.2021.103670.

    Article  MathSciNet  Google Scholar 

  18. A. Yu. Lashkov, A. D. Bulanov, and Oh. Yu. Troshin, “Filtration Combustion of Silicon Tetrafluoride and Calcium Hydride for the Preparation of Monosilane," Neorgan. Mater. 52 (9), 981–984 (2016) [Inorg. Mater. 52 (9), 915–918 (2016); https://doi.org/10.1134/S0020168516090107].

    Article  Google Scholar 

  19. V. M. Kislov et al., “Coal Gasification by a Mixture of Air and Carbon Dioxide in the Filtration Combustion Mode," Fiz. Goreniya Vzryva 52 (3), 72–78 (2016) [Combust., Expl., Shock Waves 52 (3), 320–325 (2016); https://doi.org/10.1134/S0010508216030102].

    Article  Google Scholar 

  20. S. V. Glazov, “Gasification of Pulverized Fuel in a Filtration Combustion Reactor with a Coolant Counterflow," Fiz. Goreniya Vzryva 51 (5), 31–41 (2021) [Combust., Expl., Shock Waves. 51 (5), 537–546 (2021). https://doi.org/10.1134/S0010508221050038].

    Article  Google Scholar 

  21. T. L. Rashwan et al., “Scaling up Self-Sustained Smouldering of Sewage Sludge for Waste-to-Energy," Waste Manag. 135, 298–308 (2021); DOI: 10.1016/j.wasman.2021.09.004.

    Article  Google Scholar 

  22. I. G. Donskoi, “Mathematical Modeling of the Joint Conversion of Coal and Sewage Sludge in an Inverted Layer Gas Generator," Izv. Tomsk. Politekh. Univ. Inzh. Geores. 330 (2), 7–18 (2019).

    Google Scholar 

  23. N. H. Jafari, T. D. Stark, and T. Thalhamer, “Spatial and Temporal Characteristics of Elevated Temperatures in Municipal Solid Waste Landfills," Waste Manag. 59, 286–301 (2017); DOI: 10.1016/j.wasman.2016.10.052.

    Article  Google Scholar 

  24. L. Kinsman, J. L. Torero, and J. I. Gerhard, “Organic Liquid Mobility Induced by Smoldering Remediation," J. Hazard. Mater. 325, 101–112 (2017); DOI: 10.1016/j.jhazmat.2016.11.049.

    Article  Google Scholar 

  25. E. V. Manzhos et al., “Ignition of a Filtration Gas Combustion Wave by a Heated Region of a Porous Medium," Fiz. Goreniya Vzryva 55 (6), 25–31 (2019) [Combust., Expl., Shock Waves 55 (6), 654–660 (2019); https://doi.org/10.1134/S0010508219060042].

    Article  Google Scholar 

  26. R. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  27. V. A. Levin and N. A. Lutsenko, “Gas Flow through a Porous Heat-Releasing Medium Taking into Account the Temperature Dependence of Gas Viscosity," Inzh.-Fiz. Zh. 79 (1), 35–40 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Borovik.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 3, pp. 40-53.https://doi.org/10.15372/FGV20220304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovik, K.G., Lutsenko, N.A. Numerical Simulation of Heterogeneous Combustion of Axisymmetric Porous Objects under Forced Filtration and Natural Convection. Combust Explos Shock Waves 58, 290–302 (2022). https://doi.org/10.1134/S0010508222030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222030042

Keywords

Navigation