Skip to main content
Log in

Role of Local Effects in the Development of Combustion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of a study carried out using numerical simulation of flame front dynamics in a gaseous reacting mixture, including those in the presence of a suspended phase of liquid microdroplets. It is shown that the local effect on the flame front is one of the leading factors determining the development of combustion. Thus, the local dynamic effect of relatively large droplets on the flame front contributes to its curvature, which, in turn, determines the corresponding local acceleration of individual sections of the front. Further unstable growth of such perturbations leads to an integral acceleration of the flame. At the same time, local stretching by the flow in lean compositions can lead to combustion extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. A. Vasil’ev and V. A. Vasiliev, “Multifuel Systems: Methane–Hydrogen–Steam," Fiz. Goreniya Vzryva 57 (1), 17–26 (2021) [Combust., Expl., Shock Waves 57 (1), 14–22 (2021); 10.1134/S0010508221010020].

    Article  Google Scholar 

  2. V. N. Prostov, A. V. Yakovlev, V. A. Gladkikh, et al., “Ignition of Water–Fuel Emulsions," Fiz. Goreniya Vzryva 22 (5), 9–14 (1986) [Combust., Expl., Shock Waves 22 (5), 502–506 (1986)].

  3. V. A. Pinchuk, T. A. Sharabura, and A. V. Kuzmin, “The Effect of Water Phase Content in Coal–Water Fuel on Regularities of the Fuel Ignition and Combustion," Fuel Process. Technol. 191, 129–137 (2019); DOI: 10.1016/j.fuproc.2019.04.011.

    Article  Google Scholar 

  4. R. I. Egorov, D. V. Antonov, T. R. Valiullin, and P. A. Strizhak, “The Ignition Dynamics of the Water–Filled Fuel Compositions," Fuel Process. Technol. 174, 26–32 (2018); DOI: 10.1016/j.fuproc.2018.02.003.

    Article  Google Scholar 

  5. S. Hayashi, S. Kumagai, and T. Sakai, “Propagation Velocity and Structure of Flames in Droplet–Vapor–Air Mixtures," Combust. Sci. Technol. 15 (5–6), 169–177 (1977); DOI: 10.1080/00102207708946782.

    Article  Google Scholar 

  6. M. Gieras, “Flame Acceleration Due to Water Droplets Action," J. Loss Prev. Process Ind. 21 (4), 472–477 (2008); DOI: 10.1016/j.jlp.2008.03.004.

    Article  Google Scholar 

  7. I. S. Yakovenko and A. D. Kiverin, “Intensification Mechanisms of the Lean Hydrogen–Air Combustion via Addition of Suspended Microdroplets of Water," Int. J. Hydrogen Energy 46 (1), 1259–1272 (2021); DOI: 10.1016/j.ijhydene.2020.09.234.

    Article  Google Scholar 

  8. H. Nomura, I. Kawasumi, Y. Ujiie, and J. Sato, “Effects of Pressure on Flame Propagation in a Premixture Containing Fine Fuel Droplets," Proc. Combust. Inst. 31 (2), 2133–2140 (2007); DOI: 10.1016/j.proci.2006.07.036.

    Article  Google Scholar 

  9. C. Nicoli, P. Haldenwang, and B. Denet, “Darrieus–Landau Instability of Premixed Flames Enhanced by Fuel Droplets," Combust. Theory Model. 21 (4), 630–645 (2017); DOI: 10.1080/13647830.2017.1279756.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. S. Betev, A. D. Kiverin, S. P. Medvedev, and I. S. Yakovenko, “Numerical Simulation of Turbulent Hydrogen Combustion Regimes near the Lean Limit," Khim. Fiz. 39 (12), 17–23 (2020) [Russ. J. Phys. Chem. B 14 (6), 940–945 (2020); DOI: 10.31857/S0207401X2012002X].

    Article  Google Scholar 

  11. Z-Y. Sun, F-S. Liu, X-C. Bao, and X-H. Liu, “Research on Cellular Instabilities in Outwardly Propagating Spherical Hydrogen–Air Flames," Int. J. Hydrogen Energy 37 (9), 7889–7899 (2012); DOI: 10.1016/j.ijhydene.2012.02.011.

    Article  Google Scholar 

  12. D. Bradley, M. Lawes, K. Liu, et al., “Laminar Burning Velocities of Lean Hydrogen–Air Mixtures at Pressures Up to 1.0 MPa," Combust. Flame 149 (1/2), 162–172 (2007); DOI: 10.1016/j.combustflame.2006.12.002.

    Article  Google Scholar 

  13. M. Matalon, “Intrinsic Flame Instabilities in Premixed and Nonpremixed Combustion," Annu. Rev. Fluid Mech. 39, 163–191 (2007); DOI: 10.1146/annurev.fluid.38.050304.092153.

    Article  ADS  MathSciNet  Google Scholar 

  14. L. D. Landau, “Theory of Slow Combustion," Zh. Eksp. Teor. Fiz. 14 240 (1944) [Acta Phys.-Chim. URSS 19 (1), 77–85 (1944)].

  15. G. I. Barenblatt, Ya. B. Zel’dovich, and A. G. Istratov, “Diffusion-Thermal Stability of a Laminar Flame," Prikl. Mekh. Tekh. Fiz. 3 (4), 21–26 (1962).

    Google Scholar 

  16. K. Kuo, Principles of Combustion (Wiley InterScience, New Jersey–Hoboken, 2005).

    Google Scholar 

  17. I. S. Yakovenko, M. F. Ivanov, A. D. Kiverin, and K. S. Melnikova, “Large-Scale Flame Structures in Ultra-Lean Hydrogen–Air Mixtures," Int. J. Hydrogen Energy 43 (3), 1894–1901 (2018); DOI: 10.1016/j.ijhydene.2017.11.138.

    Article  Google Scholar 

  18. K. McGrattan, R. McDermott, S. Hostikka, et al., “Fire Dynamics Simulator Technical Reference Guide. Volume 1: Mathematical Model," in Tech. Rep. NIST Special Publ. 1018-1 (U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, 2013); DOI: 10.6028/NIST.SP.1018.

  19. A. Kéromnès, W. K. Metcalfe, K. A. Heufer, et al., “An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures," Combust. Flame 160 (6), 995–1011 (2013); DOI: 10.1016/j.combustflame.2013.01.001.

    Article  Google Scholar 

  20. A. D. Kiverin, I. S. Yakovenko, and K. S. Melnikova, “On the Structure and Stability of Ultra-Lean Flames," J. Phys.: Conf. Ser. 1147, 012048 (2019); DOI: 10.1088/1742-6596/1147/1/012048.

    Article  Google Scholar 

  21. M. F. Ivanov, A. D. Kiverin, and E. D. Shevelkina, “Evolution of Vortex Perturbations at Different Stages of Turbulent Flows," Inzh. Zh.: Nauka Innov. 8 (20), 1–14 (2013); DOI: 10.18698/2308-6033-2013-8-870.

    Article  Google Scholar 

  22. R. Borghi, “On the Structure and Morphology of Turbulent Premixed Flames," in Recent Advances in the Aerospace Sciences, Ed. by C. Casci and C. Bruno (Springer, Boston, 1985).

  23. V. P. Karpov and A. S. Sokolik, “Inflammation Limits in Perturbed Gas Mixtures," Dokl. Akad. Nauk SSSR 141 (2), 393–396 (1961).

    Article  ADS  Google Scholar 

  24. I. Yakovenko, A. Kiverin, and K. Melnikova, “Ultra-Lean Gaseous Flames in Terrestrial Gravity Conditions," Fluids 6 (1), 1–21 (2021); DOI: 10.3390/fluids6010021.

  25. T. Ogawa, V. N. Gamezo, and E. S. Oran, “Flame Acceleration and Transition to Detonation in an Array of Square Obstacles," J. Loss Prev. Process Ind. 26 (2), 355–362 (2013); DOI: 10.1016/j.jlp.2011.12.009.

    Article  Google Scholar 

  26. B. Kichatov, A. Korshunov, V. Gubernov, et al., “Combustion of Heptane-In-Water Emulsion Foamed with Hydrogen–Oxygen Mixture," Fuel Process Technol. 198, 106230 (2020); DOI: 10.1016/j.fuproc.2019.106230.

    Article  Google Scholar 

  27. B. Kichatov, A. Korshunov, A. Kiverin, and E. Son, “Combustion of Hydrogen–Oxygen Microfoam on the Water Base," Int. J. Hydrogen Energy 42 (26), 16866–16876 (2017); DOI: 10.1016/j.ijhydene.2017.05.141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yakovenko.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 3, pp. 32-39.https://doi.org/10.15372/FGV20220303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiverin, A.D., Yakovenko, I.S. Role of Local Effects in the Development of Combustion. Combust Explos Shock Waves 58, 282–289 (2022). https://doi.org/10.1134/S0010508222030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222030030

Keywords

Navigation