Skip to main content
Log in

Al–Cu Powder Oxidation Kinetics during Heating in Air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The use of nanosized metal powders is a promising direction in the development of modern energy compositions due to their high reactivity and intense heat release upon contact with an oxidizer and during combustion. The results of a combined analysis (thermogravimetric analysis and differential scanning calorimetry) of Alex aluminum nanopowders and a Al–Cu compound, obtained via electrical explosion of conductors, are presented at constant heating rates of 2, 4, and 20°C /min in air in a temperature range of 30–1300°C . It is revealed that Alex and Al–Cu nanopowders are intensely oxidized when heated in air to a temperature of 600°C due to the oxidizer diffusion through the porous oxide layer Al2O3 and the possible formation of open surfaces of an active metal during a phase change in the crystal lattice of the metal oxide. The Friedman and Kissinger–Akahira–Sunose methods were used to obtain dependences between the activation oxidation energy on the degree of conversion (oxidation) of nanosized metal powders. It is shown that the activation energy of Alex and Al–Cu nanopowders depends on the degree of conversion (oxidation stages) and lies in ranges of 78–307 and 99–430 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. A. Gurevich, K. I. Lapkina, and E. S. Ozerov, “Ignition Limits of Aluminum Particles," Fiz. Goreniya Vzryva 6 (2), 182–176 (1970) [Combust., Expl., Shock Waves 6 (2), 154–157 (1970)].

    Google Scholar 

  2. L. Meda, G. Marra, L. Galfetti, et al., “Nano-Aluminum as Energetic Material for Rocket Propellants," Mater. Sci. Eng. C 27 (5–8), 1393–1396 (2007); DOI: 10.1016/j.msec.2006.09.030.

    Article  Google Scholar 

  3. D. Sundaram, “Metal–Water Mixtures for Propulsion and Energy-Conversion Applications: Recent Progress and Future Directions," Euras. Chem.-Technol. J. 20 (1), 53–62 (2018); DOI: 10.18321/ectj708.

    Article  Google Scholar 

  4. D. A. Rodriguez, E. L. Dreizin, and E. Shafirovich, “Hydrogen Generation from Ammonia Borane and Water Through Combustion Reactions with Mechanically Alloyed Al–Mg Powder," Combust. Flame 162 (4), 1498–1506 (2015); 10.1016/j.combustflame.2014.11.019.

    Article  Google Scholar 

  5. H. Belal, C. W. Han, I. E. Gunduz, et al., “Ignition and Combustion Behavior of Mechanically Activated Al–Mg Particles in Composite Solid Propellants," Combust. Flame 194, 410–418 (2018); DOI: 10.1016/j.combustflame.2018.04.010.

    Article  Google Scholar 

  6. H. Lee, J. H. Kim, S. Kang, et al., “Ignition of Nickel Coated Aluminum Agglomerates Using Shock Tube," Combust. Flame 221, 160–169 (2020); DOI: 10.1016/j.combustflame.2020.07.021.

    Article  Google Scholar 

  7. S. Kim, J. Lim, S. Lee, et al., “Study on the Ignition Mechanism of Ni-Coated Aluminum Particles in Air," Combust. Flame 198, 24–39 (2018); DOI: 10.1016/j.combustflame.2018.07.010.

    Article  Google Scholar 

  8. A. Abraham, H. Nie, M. Schoenitz, et al., “Bimetal Al–Ni Nano-Powders for Energetic Formulations," Combust. Flame 173, 179–186 (2016); DOI: 10.1016/j.combustflame.2016.08.015.

    Article  Google Scholar 

  9. T. Bazyn, N. Glumac, H. Krier, “Reflected Shock Ignition and Combustion of Aluminum and Nanocomposite Thermite Powders," Combust. Sci. Technol. 179 (3), 457–476 (2007); DOI: 10.1080/00102200600637261.

    Article  Google Scholar 

  10. F. Tepper, “Nanosize Powders Produced by Electro-Explosion of Wire and Their Potential Applications," Powder Metal. 43 (4), 320–322 (2000).

    Google Scholar 

  11. M. I. Lerner, A. V. Pervikov, E. A. Glazkova, et al., “Structures of Binary Metallic Nanoparticles Produced by Electrical Explosion of Two Wires from Immiscible Elements," Powder Technol. 288, 371–378 (2016); DOI: 10.1016/j.powtec.2015.11.037.

    Article  Google Scholar 

  12. K. Gnanaprakash, S. R. Chakravarthy, and R. Sarathi, “Combustion Mechanism of Composite Solid Propellant Sandwiches Containing Nano-Aluminium," Combust. Flame 182, 64–75 (2017); DOI: 10.1016/j.combustflame.2017.04.024.

    Article  Google Scholar 

  13. A. G. Korotkikh, I. V. Sorokin, E. A. Selikhova, and V. A. Arkhipov, “Effect of B, Fe, Ti, Cu Nanopowders on the Laser Ignition of Al-Based High-Energy Materials," Combust. Flame 222, 103–110 (2020); DOI: 10.1016/j.combustflame.2020.08.045.

    Article  Google Scholar 

  14. L. De Luca, L. Galfetti, G. Colombo, et al., “Microstructure Effects in Aluminized Solid Rocket Propellants," J. Propul. Power 26 (4), 724–732 (2010); DOI: 10.2514/1.45262.

    Article  Google Scholar 

  15. A. Gromov, L. T. De Luca, A. P. Il’in, et al., “Nanometals in Energetic Systems: Achievements and Future," Int. J. Energ. Mater. Chem. Propul. 13 (5), 399–419 (2014); DOI: 10.1615/IntJEnergeticMaterialsChemProp.2014011255.

    Article  Google Scholar 

  16. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air," Combust. Flame 156 (1), 5–13 (2009); DOI: 10.1016/j.combustflame.2008.07.018.

    Article  Google Scholar 

  17. D. Sundaram, V. Yang, and R. A. Yetter, “Metal-Based Nanoenergetic Materials: Synthesis, Properties, and Applications," Prog. Energy Combust. Sci. 61, 293–365 (2017); DOI: 10.1016/j.pecs.2017.02.002.

    Article  Google Scholar 

  18. T. R. Sippel, S. F. Son, and L. J. Groven, “Aluminum Agglomeration Reduction in a Composite Propellant Using Tailored Al/PTFE Particles," Combust. Flame 161 (1), 311–321 (2014); DOI: 10.1016/j.combustflame.2013.08.009.

    Article  Google Scholar 

  19. D. S. Sundaram, P. Puri, and V. Yang, “Pyrophoricity of Nascent and Passivated Aluminum Particles at Nano-Scales," Combust. Flame 160 (9), 1870–1875 (2013); DOI: 10.1016/j.combustflame.2013.03.031.

    Article  Google Scholar 

  20. V. E. Zarko and A. A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application (Elsevier Inc., 2016).

    Google Scholar 

  21. A. V. Pervikov, S. O. Kazantsev, A. S. Lozhkomoev, and M. I. Lerner, “Bimetallic Al–Ag, Al–Cu and Al–Zn Nanoparticles with Controllable Phase Compositions Prepared by the Electrical Explosion of Two Wires," Powder Technol. 372, 136–147 (2020); DOI: 10.1016/j.powtec.2020.05.088.

    Article  Google Scholar 

  22. F. Noor, A. Vorozhtsov, M. Lerner, et al., “Thermal-Chemical Characteristics of Al–Cu Alloy Nanoparticles," J. Phys. Chem. C. 119 (25), 14001–14009 (2015); DOI: 10.1021/acs.jpcc.5b01515.

    Article  Google Scholar 

  23. T. Fournaise, J. Burgain, C. Perroud, et al., “Impact of Formulation on Reconstitution and Flowability of Spray-Dried Milk Powders," Powder Technol. 372, 107–116 (2020); DOI: 10.1016/j.powtec.2020.05.085.

    Article  Google Scholar 

  24. C. Salameh, J. Scher, J. Petit, et al., “Physico-Chemical and Rheological Properties of Lebanese Kishk Powder, a Dried Fermented Milk–Cereal Mixture," Powder Technol. 292, 307–313 (2016); DOI: 10.1016/j.powtec.2016.01.040.

    Article  Google Scholar 

  25. V. A. Arkhipov, S. S. Bondarchuk, A. G. Korotkikh, and M. I. Lerner, “Aluminum Nanopowders: Production Technology and Disperse Characteristics," Tsvet. Met., No. 4, 58–66 (2006).

  26. M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin, “Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders," Combust. Flame 140 (4), 310–318 (2005); DOI: 10.1016/j.combustflame.2004.10.010.

    Article  Google Scholar 

  27. M. A. Trunov, M. Schoenitz, and E. L. Dreizin, “Ignition of Aluminum Powders Under Different Experimental Conditions," Propell., Explos., Pyrotech. 30 (1), 36–43 (2005); DOI: 10.1002/prep.200400083.

    Article  Google Scholar 

  28. S. Vyazovkin, A. K. Burnham, J. M. Criado, et al., “ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data," Thermochim. Acta. 520 (1/2), 1–19 (2011); DOI: 10.1016/j.tca.2011.03.034.

    Article  Google Scholar 

  29. D. Hastings, M. Schoenitz, and E. L. Dreizin, “Highly Reactive Spheroidal Milled Aluminum," Materialia 15, 100959 (2021); DOI: 10.1016/j.mtla.2020.100959.

    Article  Google Scholar 

  30. A. B. Vorozhtsov, M. Lerner, N. Rodkevich, et al., “Oxidation of Nano-Sized Aluminum Powders," Thermochim. Acta. 636, 48–56 (2016); DOI: 10.1016/j.tca.2016.05.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Korotkikh or A. B. Godunov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 2, pp. 38-48.https://doi.org/10.15372/FGV20220204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkikh, A.G., Godunov, A.B. & Sorokin, I.V. Al–Cu Powder Oxidation Kinetics during Heating in Air. Combust Explos Shock Waves 58, 159–168 (2022). https://doi.org/10.1134/S0010508222020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222020046

Keywords

Navigation