Skip to main content
Log in

Interruption of Detonation Wave Propagation in Monofuel–Air Mixtures by a Layer of Inhomogeneous Inert Particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the results of a numerical study pertaining to the interruption of detonation wave propagation in monofuel–air mixtures by a layer of inhomogeneous inert particles. It is shown that layer diameter, layer length, and the inhomogeneity of inert particles affect this process. It is revealed that, if the total mass of the mixture is fixed, a layer with a linearly decreasing concentration of inert particles damps detonation waves much better than that with a linearly increasing and uniform concentration of inert particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. A. V. Fedorov, D. A. Tropin, and I. A. Bedarev, “Mathematical Modeling of Detonation Suppression in a Hydrogen–Oxygen Mixture by Inert Particles," Fiz. Goreniya Vzryva 46 (3), 103–115 (2010) [Combust., Expl., Shock Waves 46 (3), 332–343 (2010)].

    Article  Google Scholar 

  2. A. V. Fedorov and D. A. Tropin, “Determination of the Critical Size of a Particle Cloud Necessary for Suppression of Gas Detonation," Fiz. Goreniya Vzryva 47 (4), 100–108 (2011) [Combust., Expl., Shock Waves 47 (4), 464–472 (2011)].

    Article  Google Scholar 

  3. P. A. Fomin and J.-R. Chen, “Effect of Chemically Inert Particles on Thermodynamic Characteristics and Detonation of a Combustible Gas," Combust. Sci. Technol. 181 (8), 1038–1064 (2009); DOI: 10.1080/00102200902908535.

    Article  Google Scholar 

  4. M. V. Papalexandris, “Numerical Simulation of Detonations in Mixtures of Gases and Solid Particles," J. Fluid Mech. 507, 95–142 (2004); DOI: 10.1017/S0022112004008894.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Z. Chen, B. Fan, and X. Jiang, “Suppression Effects of Powder Suppressants on the Explosions of Oxyhydrogen Gas," J. Loss Prev. Process Ind. 19 (6), 648–655 (2006); DOI: 10.1016/j.jlp.2006.03.006.

    Article  Google Scholar 

  6. G. Dong, B. Fan, B. Xie, and J. Ye, “Experimental Investigation and Numerical Validation of Explosion Suppression by Inert Particles in Large-Scale Duct," Proc. Combust. Inst. 30 (2), 2361–2368 (2005); DOI: 10.1016/j.proci.2004.07.046.

    Article  Google Scholar 

  7. K. C. Gottiparthi and S. Menon, “A Study of Interaction of Clouds of Inert Particles with Detonation in Gases," Combust. Sci. Technol. 184 (3), 406–433 (2012); DOI: 10.1080/00102202.2011.641627.

    Article  Google Scholar 

  8. Y. Liu, X. Liu, and X. Li, “Numerical Investigation of Hydrogen Detonation Suppression with Inert Particle in Pipelines," Int. J. Hydrogen Energy 41 (46), 21548–21563 (2016); DOI: 10.1016/j.ijhydene.2016.09.170.

    Article  Google Scholar 

  9. H. Shafiee and M. H. Djavareshkian, “CFD Simulation of Particles Effects on Characteristics of Detonation," Int. J. Comput. Theory Eng. 6 (6), 466–471 (2014); DOI: 10.7763/IJCTE.2014.V6.911.

    Article  Google Scholar 

  10. D. A. Tropin and A. V. Fedorov, “Physical and Mathematical Modeling of Interaction of Detonation Waves in Mixtures of Hydrogen, Methane, Silane, and Oxidizer with Clouds of Inert Micro- and Nanoparticles," Combust. Sci. Technol. 191 (2), 275–283 (2019); DOI: 10.1080/00102202.2018.1459584.

    Article  Google Scholar 

  11. D. A. Tropin and A. V. Fedorov, “Mathematical Modeling of Detonation Wave Suppression by Cloud of Chemically Inert Solid Particles," Combust. Sci. Technol. 186 (10/11), 1690–1698 (2014); DOI: 10.1080/00102202.2014.935637.

    Article  Google Scholar 

  12. A. G. Kutushev, Mathematical Modeling of Wave Processes in Air–Particle and Powder-Like Media (Nedra, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  13. A. G. Kutushev and O. N. Pichugin, “Numerical Investigation of the Process of Interrupting the Detonation Wave Propagation in Monofuel Gas Suspensions Using an Inert Particle Layer," Fiz. Goreniya Vzryva 29 (2), 90–98 (1993) [Combust., Expl., Shock Waves 29 (2), 215–222 (1993)].

    Article  Google Scholar 

  14. A. G. Kutushev and O. N. Pichugin, “Influence of the Spatial Nonuniformity of Particle Distribution in a Screening Layer on the Suppression of a Detonation Wave in a Monofuel–Air Suspension," Fiz. Goreniya Vzryva 32 (4), 107–109 (1996) [Combust., Expl., Shock Waves 32 (4), 449–451 (1996)].

    Article  Google Scholar 

  15. B. Kh. Khuzhaerov, A. G. Kutushev, V. F. Burnashev, and U. A. Nazarov, “Numerical Simulation of Interruption of Detonation Wave Propagation in Monofuel–Gas Mixtures by a Layer of Inert Particles," Probl. Mekh., No. 1, 31–35 (2010).

  16. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1982; Hemisphere, New York, 1991).

    Google Scholar 

  17. O. M. Belotserkovskii and Yu. M. Davydov, Large Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Nazarov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 6, pp. 65-76.https://doi.org/10.15372/FGV20210608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, U.A. Interruption of Detonation Wave Propagation in Monofuel–Air Mixtures by a Layer of Inhomogeneous Inert Particles. Combust Explos Shock Waves 57, 693–703 (2021). https://doi.org/10.1134/S0010508221060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221060083

Keywords

Navigation