Skip to main content
Log in

Effect of Particle Orientation on the Burning Rate of Ammonium-Perchlorate-Based Solid Propellants

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper addresses the effect of oxidizer particle orientation on the burning rate of ammonium-perchlorate-based heterogeneous solid propellants. Mesoscale numerical simulations are conducted assuming that oxidizer particles are ellipsoidal and have different orientations with respect to the combustion direction. The particle orientation is found to produce a significant effect on the burning rate, up to 5–10% depending on the particle aspect ratio or particle loading. Particles aligned normal to the combustion surface are found to burn faster than those aligned parallel to this surface. This strong impact of the orientation can help explain the well-known hump effect in solid propulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. W. Beckstead, “Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants," Prog. Astronaut. Aeronaut. 185, 267–286 (2000); DOI: 10.2514/5.9781600866562.0267.0285.

    Article  Google Scholar 

  2. T. L. Jackson and J. Buckmaster, “Heterogeneous Propellant Combustion," AIAA J. 40 (6), 1122–1130 (2002); DOI: 10.2514/2.1761.

    Article  ADS  Google Scholar 

  3. L. Massa, T. L. Jackson, and M. Short, “Numerical Solution of Three-Dimensional Heterogeneous Solid Propellants," Combust. Theory Model. 7 (3), 579–602 (2003); DOI: 10.1088/1364-7830/7/3/308.

    Article  ADS  Google Scholar 

  4. D. Deepak, R. Jeenu, P. Sridharan, and M. S. Padmanabhan, “Direct Evidence of Spatial Burning Rate Variation as Cause of Midweb Anomaly," J. Propul. Power 17 (2), 449–452 (2001); DOI: 10.2514/2.5763.

    Article  Google Scholar 

  5. T. E. Kallmeyer and L. H. Sayer, “Differences between Actual and Predicted Pressure–Time Histories of Solid Rocket Motors," in 18th AIAA/SAE/ASME Joint Propul. Conf., Cleveland, Ohio, July 21–23, 1982, AIAA Paper No. 1982-1094; DOI: 10.2514/6.1982-1094.

  6. M. P. Friedlander and F. W. Jordan, “Radial Variation of Burning Rate in Center Perforated Grains," in 20th AIAA/SAE/ASME Joint Propul. Conf., Cincinnati, Ohio, June 11–13, 1984, AIAA Paper No. 1984-1442; DOI: 10.2514/6.1984-1442.

  7. P. Le Breton and D. Ribéreau, “Casting Process Impact on Small-Scale Solid Rocket Motor Ballistic Performance," J. Propul. Power 18 (6), 1211–1217 (2002); DOI: 10.2514/2.6055.

    Article  Google Scholar 

  8. S. D. Heister, “Ballistics of solid Rocket Motors with Spatial Burning Rate Variations," J. Propul. Power 9 (4), 649–651 (1993); DOI: 10.2514/3.23671.

    Article  ADS  Google Scholar 

  9. K. Kitagawa, T. Shimada, H. Hasegawa, et al., “Correlation of Midweb Anomaly with Microstructure of Composite Propellant Containing High Amount of Aluminum," in 47th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit, San Diego, California, July 31 to August 03, 2011, AIAA Paper No. 2011-5714; DOI: 10.2514/6.2011-5714.

  10. X. Wang, J. Buckmaster, and T. L. Jackson, “Burning of Ammonium-Perchlorate Ellipses and Spheroids in Fuel Binder," J. Propul. Power 22 (4), 764–768 (2006); DOI: 10.2514/1.15739.

    Article  Google Scholar 

  11. M. Plaud, S. Gallier, and M. Morel, “Simulations of Heterogeneous Propellant Combustion: Effect of Particle Orientation and Shape," Proc. Combust. Inst. 35 (2), 2447–2454 (2015); DOI: 10.1016/j.proci.2014.05.020.

    Article  Google Scholar 

  12. S. Gallier, A. Ferrand, and M. Plaud, “Three-Dimensional Simulations of Ignition of Composite Solid Propellants," Combust. Flame 173, 2–15 (2016); DOI: 10.1016/j.combustflame.2016.07.012.

    Article  Google Scholar 

  13. S. Gallier and M. Plaud, “A Model for Solid Propellant Burning Fluctuations Using Mesoscale Simulations," Acta Astronaut. 158, 296–303 (2019); DOI: 10.1016/j.actaastro.2019.03.029.

    Article  ADS  Google Scholar 

  14. S. Jain, M. Mehilal, S. Nandagopal, et al., “Size and Shape of Ammonium Perchlorate and Their Influence on Properties of Composite Propellant," Defence Sci. J. 59 (3), 294–299 (2009); DOI: 10.14429/dsj.59.1523.

    Article  Google Scholar 

  15. M. Chen, J. Buckmaster, T. L. Jackson, and L. Massa, “Homogenization Issues and the Combustion of Heterogeneous Solid Propellants," Proc. Combust. Inst. 29 (2), 2923–2929 (2002); DOI: 10.1016/S1540-7489(02)80357-1.

    Article  Google Scholar 

  16. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, 2013), Vol. 16.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Gallier or M. Plaud.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 6, pp. 56-64.https://doi.org/10.15372/FGV20210607.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallier, S., Plaud, M. Effect of Particle Orientation on the Burning Rate of Ammonium-Perchlorate-Based Solid Propellants. Combust Explos Shock Waves 57, 685–692 (2021). https://doi.org/10.1134/S0010508221060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221060071

Keywords

Navigation