Skip to main content
Log in

Hedvall Effect in Self-Propagating High-Temperature Synthesis in Mechanically Activated Compositions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The Hedvall effect was implemented in self-propagating high-temperature synthesis (SHS) in TiNi + 1.1C and Ni3Al + 1.2Si low-calorific-value compositions using preliminary mechanical activation (MA) in a high-energy planetary ball mill. The dependences of the initiation temperature and the maximum reaction temperature on MA time were obtained. MA conditions that provide the solid-state mode of the self-propagating reaction were determined. The results of X-ray diffraction and electron microscopy of MA and SHS products are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

REFERENCES

  1. Yu. D. Tret’yakov, Solid-State Reactions (Khmiya, Moscow, 1978) [in Russian].

    Google Scholar 

  2. Ya. S. Umanskii and Yu. A. Skakov, Physics of Metals (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  3. P. P. Budnikov and A. M. Ginstling, Reactions in Mixtures of Solids (Stroiizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  4. Yu. M. Maksimov, A. G. Merzhanov, L. G. Raskolenko, M. Kh. Ziatdinov, and O. K. Lepakova, “Effect of the \(\sigma \)\(\alpha\) Phase Transition during Combustion of Ferrovanadium in Nitrogen," Dokl. Akad. Nauk SSSR 64 (3), 629–632 (1982).

    Google Scholar 

  5. Yu. M. Maksimov, B. Sh. Braverman, and L. G. Raskolenko, “Effect of the \(\lambda\to\beta\) Phase Transition on the Combustion of Titanium–Chromium Alloys in Nitrogen," Fiz. Goreniya Vzryva 20 (4), 28–31 (1984) [Combust., Expl., Shock Waves 20 (4), 384–386 (1984); https://doi.org/10.1007/BF00782385].

    Article  Google Scholar 

  6. B. Sh. Braverman and Yu. M. Maksimov, “Combustion of Titanium–Chromium Alloys in Nitrogen and Boron, Combustion of Condensed Systems," in Proc. of the VIII All-Union Symp. on Combustion and Explosion (ISMAN, Chernogolovka, 1986), pp. 5–8.

  7. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  8. E. G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  9. O. I. Lomovskii and V. V. Boldyrev, Mechanochemistry in Solving Ecological Problems (GPNTB SO RAN, Novosibirsk, 2006 [in Russian].

    Google Scholar 

  10. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  11. C. Suryanarayana, “Mechanical Alloying and Milling," Prog. Mater. Sci. 46 (1/2), 1–184 (2001).

    Article  Google Scholar 

  12. V. K. Smolyakov and O. V. Lapshin, Macroscopic Kinetics of Mechanochemical Synthesis (Inst. of Atmosph. Optics, Sib. Branch, Russian Acad. of Sci., Tomsk, 2011) [in Russian].

    Google Scholar 

  13. D. McLean, Mechanical Properties of Metals (Wiley, New York, 1962)

    Google Scholar 

  14. V. A. Zhorin, M. R. Kiselev, L. L. Mukhina, T. P. Puryaeva, and I. V. Razumovskaya, “X-ray Structural and Calorimetric Study of Al–Cu Mixtures after Plastic Deformation under High Pressure," Khim. Fiz. 27 (2), 39–46 (2008).

    Google Scholar 

  15. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions," Fiz. Goreniya Vzryva 51 (5), 77–86 (2015) [Combust., Expl., Shock Waves 51 (5), 578–586 (2015); https://doi.org/10.1134/S0010508215050093].

    Article  Google Scholar 

  16. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds (Izd. Tomsk. Gos. Univ., Tomsk 1989) [in Russian].

    Google Scholar 

  17. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  18. E. A. Levashov, V. V. Kurbatkina, and K. V. Kolesnichenko, “Effect of Preliminary Mechanical Activation on the Reactivity of SHS-Mixtures Based on Titanium," Izv. Vyssh. Uchebn. Zaved. Tsv. Metallurg., No. 6, 61–67 (2000).

  19. M. A. Korchagin, A. I. Gavrilov, B. B. Bokhonov, N. V. Bulina, and V. E. Zarko, “Synthesis of Aluminum Diboride by Thermal Explosion in Mechanically Activated Mixtures of Initial Reactants," Fiz. Goreniya Vzryva 54 (4), 45–54 (2018); [Combust., Expl., Shock Waves 54 (4), 424–432 (2018); https://doi.org/10.1134/S0010508218040068].

    Article  Google Scholar 

  20. M. A. Korchagin and N. V. Bulina, “Superadiabatic Regime of the Thermal Explosion in a Mechanically Activated Mixture of Tungsten with Carbon Black," Fiz. Goreniya Vzryva 52 (2), 112–121 (2016); [Combust., Expl., Shock Waves 52 (2), 225–233 (2016); https://doi.org/10.1134/S0010508216020131].

    Article  Google Scholar 

  21. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, M. R. Sharafutdinov, A. P. Barinova, and N. Z. Lyakhov, “Solid-State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on the Process Parameters and Combustion Product Composition," Fiz. Goreniya Vzryva 39 (1), 51–59 (2003) [Combust., Expl., Shock Waves 39 (1), 43–50 (2003); https://doi.org/10.1023/A:1022145201911].

    Article  Google Scholar 

  22. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, M. R. Sharafutdinov, A. P. Barinova, and N. Z. Lyakhov, “Solid-State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition," Fiz. Goreniya Vzryva 39 (1), 60–68 (2003) [Combust., Expl., Shock Waves 39 (1), 51–58 (2003); https://doi.org/10.1023/A:1022197218749].

    Article  Google Scholar 

  23. V. E. Gunter, V. I. Itin, L. A. Monasevich, and Yu. I. Paskal’, Shape-Memory Effects and Their Application in Medicine (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  24. E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, “Planetary Mill," USSR Authors Certificate No. 975068, Byul. Izobr., No. 43 (1982).

  25. M. A. Korchagin, D. V. Dudina, A. I. Gavrilov, B. B. Bokhonov, N. V. Bulina, A. V. Panin, and N. Z. Lyakhov, “Combustion of Titanium–Carbon Black High-Energy Ball-Milled Mixtures in Nitrogen: Formation of Titanium Carbonitrides at Atmospheric Pressure," Materials 13 (8), 1810–1819 (2020); DOI: 10.3390/ma13081810.

    Article  ADS  Google Scholar 

  26. A. G. Merzhanov and A. S. Mukas’yan, Solid Flame Combustion (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  27. M. Jain and S. P. Gupta, “Formation of Intermetallic Compounds in Ni–Al–Si Ternary System," Mater. Charact. 51 (4), 243–257 (2003); DOI: 10.1016/j.matchar.2003.12.002.

    Article  Google Scholar 

  28. Sh. Zohari, Z. Sadeghian, B. Lotfi, and Ch. Broeckmann, “Application of Spark Pasma Sintering (SPS) for the Fabrication of in situ Ni–TiC Nanocomposite Clad Layer," J. Alloys Compd. 633, 479–483 (2015); DOI: 10.1016/j.jallcom.2015.01.276.

    Article  Google Scholar 

  29. Diagrams of State of Binary Metal Systems: Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996) [in Russian].

    Google Scholar 

  30. International Center for Diffraction Data (ICDD PDF-4) (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korchagin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 6, pp. 8-19.https://doi.org/10.15372/FGV20210602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchagin, M.A., Gavrilov, A.I., Dudina, D.V. et al. Hedvall Effect in Self-Propagating High-Temperature Synthesis in Mechanically Activated Compositions. Combust Explos Shock Waves 57, 640–650 (2021). https://doi.org/10.1134/S0010508221060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221060022

Keywords

Navigation