Skip to main content
Log in

Reproducibility of Detonation Parameters of Mixtures of Tetranitromethane with Methanol and Nitrobenzene

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A VISAR multipoint laser interferometer is used to study a detonation wave structure in mixtures of tetranitromethane with methanol and nitrobenzene. A poor reproducibility of particle velocity profiles is observed in different experiments with a fixed composition of mixtures. As shown by simultaneous recording of wave profiles at several points of the detonation front and different cross sections of the sample, the flow is one-dimensional and stable with respect to longitudinal perturbations. This means that steady detonation is observed in each experiment, and its parameters differ from shot to shot. Aside from the lack of reproducibility of particle velocity profiles, nonclassical detonation is recorded in the mixtures under study, which is observed as the absence of a von Neumann spike in a reaction zone. A possible relationship between these two phenomena is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. E. V. Zotov, Initiation of Liquid Explosives by an Electric Spark (VNIIEF, Sarov, 2004) [in Russian].

  2. A. Ya. Akin, I. M. Voskoboinikov, and G. S. Sosnova, “Proceeding of a Reaction in a Detonation Wave of Mixed Explosives," Prikl. Mekh. Tekh. Fiz. 4 (5), 115–117 (1963).

    Google Scholar 

  3. J. F. Roth, “The Explosive Properties of Mixtures of Tetranitromethane and Nitrobenzene: A Contribution in Support of the Hydrodynamic Theory," Z. Gesamte Schiess-Sprengstoffwes36, 4–28 (1941).

    Google Scholar 

  4. A. V. Utkin and V. M. Mochalova, “Non-Classical Detonation Regimes of Liquid High Explosives," J. Phys.: Conf. Ser. 946012056 (2018); DOI: 10.1088/1742-6596/946/1/012056.

  5. A. V. Fedorov, A. L. Mikhaylov, A. V. Men’shikh, et al., “Stability of a Detonation Wave Front of Mixed Explosives: Nitrobenzene and Tetranitromethane–Nitromethane," Khim. Fiz. 26 (12), 34–39 (2007); DOI: 10.1134/S1990793107060140.

    Google Scholar 

  6. A. V. Fedorov, A. L. Mikhaylov, A. V. Men’shikh, et al., “On the Stability of the Detonation Wave Front in the High Explosive Liquid Mixture Tetranitromethane/Nitrobenzene," J. Energ. Mater.28 (1), 205–215 (2010); DOI: 10.1080/07370651003639371.

    Article  ADS  Google Scholar 

  7. V. M. Mochalova, A. V. Utkin, V. E. Rykova, et al., “Detonation Properties of the Mixture of Tetranitromethane/Nitrobenzene," Combust. Flame 208, 158–163 (2019); DOI: 10.1016/j.combustflame.2019.06.033.

    Article  Google Scholar 

  8. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov,Detonation Waves in Condensed Media (Nauka, Moscow, 1970) [in Russian].

  9. K. I. Shchelkin, “Two Cases of Unstable Combustion," Zh. Eksp. Teor. Fiz. 36 (2), 600–606 (1959) [Soviet Phys. JETP36 (9), 416–420 (1959)].

  10. K. I. Shchelkin and Ya. K. Troshin, Gasdynamics of Combustion (National Aeronautics and Space Administration, 1964).

  11. R. M. Zaidel’ and Ya. B. Zel’dovich, “One-Dimensional Instability and Detonation Decay," Prikl. Mekh. Tekh. Fiz. 4(6), 59–65 (1963).

    Google Scholar 

  12. K. I. Shchelkin, “Instability of Combustion and Detonation of Gases," Usp. Fiz. Nauk 87 (2), 273–302 (1965) [Soviet Phys. Usp. 8 (5), 780 (1965)].

  13. J. J. Erpenbeck, “Stability of Idealized One-Reaction Detonations," Phys. Fluids 7 (5), 684–696 (1964); DOI: 10.1063/1.1711269.

    Article  ADS  MATH  Google Scholar 

  14. H. I. Lee and D. S. Stewart, “Calculation of Linear Detonation Instability One-Dimensional Instability of Plane Detonation," J. Fluid Mech. 216, 103–132 (1990); DOI: 10.1017/S0022112090000362.

    Article  ADS  MATH  Google Scholar 

  15. P. Clavin and L. He, “Stability and Nonlinear Dynamics of One-Dimensional Overdriven Detonations in Gases, J. Fluid Mech. 306, 353–378 (1996); DOI: 10.1017/S0022112096001334.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. J. Sharpe, “Linear Stability of Idealized Detonation," Proc. Roy. Soc. London A 453, 2603–2625 (1997); DOI: 10.1098/rspa.1997.0139.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. D. Watt and G. J. Sharpe, “One-Dimensional Linear Stability of Curved Detonations," Proc. Roy. Soc. London A 460, 2551–2568 (2004); DOI: 10.1098/rspa.2004.1290.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Tumin, “Initial-Value Problem for Small Disturbances in an Idealized One-Dimensional Detonation," Phys. Fluids19, 106105 (2007); DOI: 10.1063/1.2793156.

  19. M. Short, I. I. Anguelova, T. D. Aslam, et al., “Stability of Detonations for an Idealized Condensed-Phase Model," J. Fluid Mech. 595, 45–82 (2008); DOI: 10.1017/S0022112007008750.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ya. B. Zel’dovich, “Theory of Detonation Propagation in Gaseous Systems," Zh. Eksp. Teor. Fiz. 10 (5), 542–568 (1940).

    Google Scholar 

  21. V. Mochalova and A. Utkin, “Determination of Detonation Parameters for Liquid High Explosives," AIP Conf. Proc. 1426(1), 303–306 (2012); DOI: 10.1063/1.3686279.

    Article  ADS  Google Scholar 

  22. V. M. Mochalova, A. V. Utkin, V. A. Garanin, and S. I. Torunov, “Structure of Detonation Waves in Tetranitromethane and Its Mixtures with Methanol," Fiz. Goreniya Vzryva 45 (3), 95–100 (2009) [Combust., Expl., Shock Waves 45 (3), 320–325 (2009)].

  23. E. Bourasseau, V. Dubois, N. Desbiens, and J. B. Maillet, “Molecular Simulations of Hugoniots of Detonation Product Mixtures at Chemical Equilibrium: Microscopic Calculation of the Chapman–Jouguet State," J. Chem. Phys. 127 (8), 084513 (2007); DOI: 10.1063/1.2766939.

  24. J. O. Hirshfelder and C. F. Curtiss, “Theory of Detonations. I. Irreversible Unimolecular Reaction," J. Chem. Phys.28 (6), 1130–1147 (1958); 10.1063/1.1744357.

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Fickett, Introduction to Detonation Theory(Univ. of California Press, 1985).

    Book  Google Scholar 

  26. Yu. B. Khariton, “Detonation Ability of Explosives," inTheory of Explosives (Izd. Akad. Nauk SSSR, Moscow–Leningrad, 1947) [in Russian].

    Google Scholar 

  27. A. V. Anan’in, S. A. Koldunov, V. A. Garanin, and S. I. Torunov, “Detonation Characteristics of Diluted Liquid Explosives: Mixtures of Tetranitromethane with Methanol," Fiz. Goreniya Vzryva48 (3), 122–126 (2012) [Combust., Expl., Shock Waves48 (3), 356–360 (2012)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Utkin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 3, pp. 97–103.https://doi.org/10.15372/FGV20210309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkin, A.V., Mochalova, V.M. & Rykova, V.E. Reproducibility of Detonation Parameters of Mixtures of Tetranitromethane with Methanol and Nitrobenzene. Combust Explos Shock Waves 57, 343–349 (2021). https://doi.org/10.1134/S0010508221030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221030096

Keywords

Navigation