Skip to main content
Log in

Passivation of Compacted Samples Made of Pyrophoric Iron Nanopowders during Their Interaction with Air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Various macrokinetic modes of interaction (self-ignition or combustion) of compact samples from nonpassivated (pyrophoric) and passivated iron nanopowders with air are under study. Experiments show that the modes of interaction with air depend on the type of the used gaseous medium (argon or air), previously containing weighting cups with samples, and on how long the bottles remain in air. The possibility of passivation of pressed samples from pyrophoric iron nanopowder is experimentally established for the first time in the case where the weighting cups with samples remain in air. Various experimental methods are used to investigate the sample heating dynamics and the effect of density inhomogeneity along the length of the sample. It is revealed that pyrophoric samples are heated nonuniformly, although heating begins simultaneously over the entire surface of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. J. Bouillard, A. Vignes, O. Dufaud, et al., “Ignition and Explosion Risks of Nanopowders," France J. Hazard. Mater. 181(1–3), 873–880 (2010); DOI: 10.1016/j.jhazmat.2010.05.094.

    Article  Google Scholar 

  2. A. Pivkina, P. Ulyanova, Y. Frolov, et al., “Nanomaterials for Heterogeneous Combustion," Propell., Explos., Pyrotech.29 (1), 39 (2004); DOI: 10.1002/prep.200400025.

    Article  Google Scholar 

  3. M. Hosokawa, K. Nogi, M. Naito, and T. Yokoyama,Nanoparticle Technology Handbook (Elsevier, 2007).

  4. N. M. Rubtsov, B. S. Seplyarskii, and M. I. Alymov,Ignition and Wave Processes in Combustion of Solids(Springer, 2017).

    Book  Google Scholar 

  5. M. Flannery, T. G. Desai, T. Matsoukas, et al., “Passivation and Stabilization of Aluminum Nanoparticles for Energetic Materials," Hindawi Publ. Corp. J. Nanomater. 2015, 185–199 (2008).

    Google Scholar 

  6. M. J. Meziani, C. E. Bunker, F. Lu, et al., “Formation and Properties of Stabilized Aluminum Nanoparticles," ACS Appl. Mater. Interfaces 13, 703–709 (2009); DOI: 10.1021/am800209m.

    Article  Google Scholar 

  7. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization, Ed. by R. Nagarajan and T. Alan Hatton (Am. Chem. Soc., Washington, 2008).

    Book  Google Scholar 

  8. A. A. Gromov, Yu. I. Strokova, and A. A. Ditts, “Passivation Films on Particles of Electroexplosion Aluminum Nanopowders: A  Review," Khim. Fiz. 29 (2), 77–91 (2010) [Russian J. Phys. Chem. B 4 (4), 156–169 (2010)].

  9. Y.-S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the Surface of Aluminum Nanopowders by Protective Coatings of the Different Chemical Origin," Appl. Surf. Sci. 253, 5558–5564 (2007); DOI: 10.1016/j.apsusc.2006.12.124.

    Article  ADS  Google Scholar 

  10. A. A. Gromov, U. Förter-Barth, and U. Teipel, “Aluminum Nanopowders Produced by Electrical Explosion of Wires and Passivated by Non-Inert Coatings: Characterisation and Reactivity with Air and Water," Powder Technol. 164, 111–115 (2006); DOI: 10.1016/j.powtec.2006.03.003.

    Article  Google Scholar 

  11. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, et al., “Temporal Characteristics of Ignition and Combustion of Iron Nanopowders in the Air," Mendeleev Commun. 26, 452–454 (2016); DOI: 10.1016/j.mencom.2016.09.030.

    Article  Google Scholar 

  12. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, et al., “Preparation and Characterization of Iron Nanoparticles Protected by an Oxide Film," Inorg. Mater. 53 (9), 911–915 (2017); DOI: 10.1134/S0020168517090011.

    Article  Google Scholar 

  13. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, et al., “Passivation of Iron Nanoparticles at Subzero Temperatures," Mendeleev Commun. 27 (5), 482–484 (2017); DOI: 10.1016/j.mencom.2017.09.017.

    Article  Google Scholar 

  14. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, et al., “Combustion and Passivation of Nickel Nanoparticles," Mendeleev Commun.27 (6), 631–633 (2017); DOI: 10.1016/j.mencom.2017.11.032.

    Article  Google Scholar 

  15. O. B. Nazarenko, A. I. Sechin, and Y. A. Amelkovich, “Characterization of Naturally Aged Iron Nanopowder Produced by Electrical Explosion of Wires," Metals Mater. Int. (2019); DOI: 10.1007/s12540-019-00443-8.

    Article  Google Scholar 

  16. A. V. Korshunov, “Kinetics of the Oxidation of an Electroexplosion Iron Nanopowder during Heating in Air," Khim. Fiz.31 (5), 27–35 (2012) [Russian J. Phys. Chem. B6 (3), 368–375 (2012)].

  17. S. Dong, H. Cheng, H. Yang, et al., “Fabrication of Intermetallic NiAl by Self-Propagating High-Temperature Synthesis Reaction Using Aluminium Nanopowder under High Pressure," J. Phys.: Condens. Matter. 14, 11023–11030 (2002); DOI: 10.1088/0953-8984/14/44/421.

    Article  ADS  Google Scholar 

  18. E. M. Hunt and M. L. Pantoya, “Ignition Dynamics and Activation Energies of Metallic Thermites: From Nano- to Micron-Scale Particulate Composites," J. Appl. Phys. 98, 034909 (2005); DOI: 10.1063/1.1990265.

  19. F. Saceleanu, M. Idir, N. Chaumeix, and J. Z. Wen, “Combustion Characteristics of Physically Mixed 40 nm Aluminum/Copper Oxide Nanothermites Using Laser Ignition," Front. Chem., No. 6 (2018); DOI: 10.3389/fchem.2018.00465.

  20. A. A. Gromov and U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications (John Wiley and Sons, 2014); DOI: 10.1002/9783527680696.

  21. S. S. Kiparisov and G. A. Libenson, Powder Metallurgy (Metallurgiya, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Seplyarskii.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 3, pp. 79–87.https://doi.org/10.15372/FGV20210307.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alymov, M.I., Seplyarskii, B.S., Vadchenko, S.G. et al. Passivation of Compacted Samples Made of Pyrophoric Iron Nanopowders during Their Interaction with Air. Combust Explos Shock Waves 57, 326–333 (2021). https://doi.org/10.1134/S0010508221030072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221030072

Keywords

Navigation