Skip to main content
Log in

Computational and Theoretical Analysis of the Effect of an Aluminum Borate Oxide Film on the Ignition Conditions of Single Aluminum Diboride Particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Thermogravimetric analysis data were used to determine the activation energy E = 205.9 kJ/mol, the pre-exponential factor A = 2.275·10−15 m3/s, and the order of reaction with respect to the oxidizer \(m\) = 1 for the oxidation of an aluminum diboride particle involving the formation of aluminum borate on the surface. The ignition conditions for a single particle of aluminum diboride in air were evaluated using the theory of ignition of metal particles by the thermal explosion mechanism. It is shown that the formation of aluminum borates in the induction period results in a strong positive dependence of the particle ignition temperature on the particle size and oxygen partial pressure of.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Yu. V. Frolov, A. N. Pivkina, S. A. Zav’yalov, and N. V. Murav’ev, “Physicochemical Properties of Components of Energetic Condensed Systems," Khim. Fiz. 29 (11), 42–49 (2010).

  2. A. M. Savel’ev, B. I. Brainin, and A. M. Starik, “Analysis of the Energy Efficiency of Using Combined Hydrocarbon Fuels with Non-Metallic and Metallic Nanocomponents in Reactive Engines," in Nonequilibrium Physicochemical Processes in Gas Flows and New Principles of Organization of Combustion, Ed. by A. M. Starik (Torus Press, Moscow, 2011), pp. 669–695 [in Russian].

  3. H. Ghassemi and H. F. Fasih, “Propulsive Characteristics of Metal Fuel-Rich Pyrotechnics in Hydro-Reactive Motors," Aerosp. Sci. Technol. 28 (1), 1–8 (2013); doi.org/10.1016/j.ast.2012.08.011.

    Article  Google Scholar 

  4. Sh. L. Guseinov and S. G. Fedorov, Nanopowders of Aluminum, Boron, and Aluminum and Silicon Borides in High-Energy Materials (Torus Press, Moscow, 2015) [in Russian].

  5. V. A. Arkhipov, A. S. Zhukov, V. T. Kuznetsov, N. N. Zolotorev, N. A. Osipova, and K. G. Perfil’eva, “Ignition and Combustion of Condensed Systems with Energy Fillers," Fiz. Goreniya Vzryva54 (6), 68–77 (2018) [Combust., Expl., Shock Waves54 (6) 689–697 (2018); doi.org/10.1134/S0010508218060084].

  6. Sh. L. Guseinov et al., “Nanodispersed Borides Aluminum Obtained by Plasma Recondensation of Micron-Size Powders of Aluminum and Boron," Ros. Nanotekhnol. 10 (5–60), 79–85 (2015).

  7. M. L. Whittaker, “Synthesis, Characterization and Energetic Performance of Metal Boride Compounds for Insensitive Energetic Materials: Thesis," Univ. of Utah. (Logan, 2012).

  8. M. L. Whittaker, H. Y. Sohn, and R. A. Cutler, “Oxidation Kinetics of Aluminum Diboride," J. Solid State Chem. 207, 163–169 (2013); doi.org/10.1016/j.jssc.2013.09.028.

    Article  ADS  Google Scholar 

  9. Sh. Adil and B. S. Murty, “Effect of Milling on the Oxidation Kinetics of Aluminium + Boron Mixture and Nanocrystalline Aluminium Boride (AlB12)," Thermochim. Acta. 678, 178306 (2019); doi.org/10.1016/j.tca.2019.178306.

  10. D. A. Yagodnikov, A. V. Voronetskii, and V. I. Sarab’ev, “Ignition and Combustion of Pyrotechnic Compositions Based on Micro- and Nanoparticles of Aluminum Diboride in Air Flow in a Two-Zone Combustion Chamber," Fiz. Goreniya Vzryva 52 (3), 51–58 (2016) [Combust., Expl., Shock Waves 52 (3), 300–306 (2016); doi.org/10.1134/S0010508216030072].

  11. A. G. Korotkikh, V. A. Arkhipov, I. V. Sorokin, and E. A. Selikhova, “Ignition and Combustion of High Energy Materials Containing Aluminum, Boron, and Aluminum Diboride," Khim. Fiz. Mezoscop. 20 (1), 5–13 (2018).

  12. D. A. Yagodnikov, Sh. L. Guseinov, P. A. Storozhenko, A. P. Shpara, A. V. Sukhov, and S. G. Fedorov, “Morphological, Chemical, and Spectral Analyses of Combustion Products of Micro- and Nanodispersed Particles of Aluminum Borides," Dokl. Akad. Nauk 484(1), 44–47 (2019).

  13. K. Yu. Arefiev, L. S. Yanovskii, and D. A. Yagodnikov, “Mathematical Modeling of Combustion of Aluminum Diboride in Air Flow," Zh. Prikl. Khim. 92, 48–56 (2019).

  14. D. Liang, R. Xiao, J. Liu, and Y. Wang, “Ignition and Heterogeneous Combustion of Aluminum Boride and Boron–Aluminum Blend," Aerosp. Sci. Technol. 84, 1081–1091 (2019).

    Article  Google Scholar 

  15. Chemical Encyclopedia, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].

  16. M. F. Hernández, G. Suárez, C. Baudin, P. Pena Castro, E. F. Aglietti, and N. M. Rendtorff, “Densification of Lightweight Aluminum Borate Ceramics by Direct Sintering of Milled Powders," J. Asian Ceram. Soc. 6 (4), 374–383 (2018); doi.org/10.1080/21870764.2018.1539209.

    Article  Google Scholar 

  17. P. V. Papyrin, A. V. Sukhov, and D. A. Yagodnikov, “Unified Mathematical Model for Ignition and Combustion of Single Particles of Aluminum Diboride," Inzh. Zh. Nauka Innov., No. 6, 1–12 (2017).

  18. B. I. Khaikin, V. N. Bloshenko, and A. G. Merzhanov, “On the Ignition of Metal Particles," Fiz. Goreniya Vzryva 6(4), 474–488 (1970) [Combust., Expl., Shock Waves 6 (4), 412–422 (1970); doi.org/10.1007/BF00742774].

    Article  Google Scholar 

  19. P. Šimon, “Isoconversional Methods—Fundamentals, Meaning and Application," J. Therm. Anal. Calorim. 76 (1), 123–132 (2004); 10.1023/B:JTAN.0000027811.80036.6c.

    Article  Google Scholar 

  20. M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin, “Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders," Combust. Flame140 (4), 310–318 (2005); doi.org/10.1016/j.combustflame.2004.10.010.

    Article  Google Scholar 

  21. B. S. Mitin and V. V. Samoteikin, “The Oxidation of Molten Aluminum," Zh. Fiz. Khimii 45 (3), 730 (1971).

  22. V. P. Elyutin, B. S. Mitin, and V. V. Samoteikin, “Effect of Oxygen Pressure on Aluminum Oxidation," Izv. Akad. Nauk SSSR, Metally, No. 3, 227–230 (1971).

  23. High-Energy Fuels for Aircraft and Rocket Engines, Ed. by L. S. Yanovskii (Fizmatlit, Moscow, 2009) [in Russian].

  24. CRC Handbook of Chemistry and Physics, Ed. by R. Lide (Taylor and Francis Group, Boca Raton, 2010).

  25. H. Scholze, “Über Aluminiumborate," Z. Anorg. Chem.284 (4–6), 272–277 (2005).

  26. M. A. Trunov, M. Schoenitz, and E. L. Dreizin, “Effect of Polymorphic Phase Transformations in Alumina Layer on Ignition of Aluminium Particles," Combust. Theory Model. 10 (4), 603–623 (2006); doi.org/10.1080/13647830600578506.

    Article  ADS  MATH  Google Scholar 

  27. D. A. Yagodnikov, Ignition and Combustion of Powdered Metals (Izd. MGTU Baumana, Moscow, 2009) [in Russian].

  28. P. Kofstad, High-Temperature Oxidation of Metals(Wiley, New York, 1966).

  29. E. A. Gulbransen and W. S. Wysong, “Thin Oxide Films on Aluminum," J. Phys. Chem. 51 (5), 1087–1103 (1947); doi.org/10.1021/j150455a004.

    Article  Google Scholar 

  30. T. A. Roberts, R. L. Burton, and H. Krier, “Ignition and Combustion of Aaluminum/Magnesium Alloy Particles in O2 at High Pressures," Combust. Flame 92 (1/2), 125–143 (1993); doi.org/10.1016/0010-2180(93)90203-F.

    Article  Google Scholar 

  31. P. E. DesJardin, J. D. Felske, and M. D. Carrara, “Mechanistic Model for Aluminum Particle Ignition and Combustion in Air," J. Propul. Power 21 (3), 478–485 (2005); doi.org/10.2514/1.5864.

    Article  Google Scholar 

  32. J. Pappis and W. D. Kingery, “Electrical Properties of Single-Crystal and Polycrystalline Alumina at High Temperatures," J. Am. Ceram. Soc. 44 (9), 459–464 (1961); doi.org/10.1111/j.1151-2916.1961.tb13756.x.

    Article  Google Scholar 

  33. B. E. Hayden, W. Wyrobisch, W. Oppermann, S. Hachicha, P. Hofmann, and A. M. Bradshaw, “The Interaction of Oxygen with Aluminium: Mainly Ellipsometric Aspects," Surf. Sci. 109 (1), 207–220 (1981); doi.org/10.1016/0039-6028(81)90520-3.

    Article  ADS  Google Scholar 

  34. R. Friedman and A. Maček, “Ignition and Combustion of Aluminium Particles in Hot Ambient Gases," Combust. Flame 6, 9–19 (1962); doi.org/10.1016/0010-2180(62)90062-7.

    Article  Google Scholar 

  35. V. M. Gremyachkin and P. M. Eremeev, “On the Ignition of an Aluminum Particle in an Oxidizing Medium," Khim. Fiz.25, 42–46 (2006).

  36. S. N. Pen’kov, “Investigation of Boron Ignition and Combustion by Means of Fast Cinespectrography," Int. J. Energ. Mater. Chem. Propul. 2 (1/6), 218–231 (1993); DOI: 10.1615/ IntJEnergeticMaterialsChemProp.v2.i1-6.120.

    Article  Google Scholar 

  37. R. O. Foelsche, R. L. Burton, and H. Krier, “Boron Particle Ignition and Combustion at 30–150 atm," Combust. Flame117 (1/2), 32–58 (1999); doi.org/10.1016/S0010-2180(98)00080-7.

    Article  Google Scholar 

  38. A. Burcat and B. Ruscic, “3d Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables," Report ANL 05/20 TAE 960.

  39. N. Birks et al., Introduction to the High-Temperature Oxidation of Metals (Cambridge Univ. Press, 2006); doi.org/10.1017/CBO9781139163903.

    Book  Google Scholar 

  40. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air," Combust. Flame 156 (1), 5–13 (2009); doi.org/10.1016/j.combustflame.2008.07.018.

    Article  Google Scholar 

  41. T. A. Yakovleva et al., “Combustion of Particles of Metal (Titanium and Aluminum) Diborides in the Flame of a Gas Burner," inMacroscopic Kinetics and Chemical and Magnetic Gas Dynamics: Abstr. of the III All-Union School–Seminar (Tomsk, 1991), Chapter 2, pp. 43–44.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Savel’ev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 3, pp. 65–78.https://doi.org/10.15372/FGV20210306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savel’ev, A.M., Titova, N.S. Computational and Theoretical Analysis of the Effect of an Aluminum Borate Oxide Film on the Ignition Conditions of Single Aluminum Diboride Particles. Combust Explos Shock Waves 57, 314–325 (2021). https://doi.org/10.1134/S0010508221030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221030060

Keywords

Navigation