Skip to main content
Log in

Review on Advanced Energetic Materials for Insensitive Munition Formulations

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Insensitive munitions are munitions that are chemically stable enough to withstand thermal, mechanical, or electrical stimuli during storage and transportation, and can still explode as intended to defeat their targets. Extensive programmes have evolved worldwide for the development and introduction of insensitive munitions (IMs). The use of insensitive energetic materials significantly improves the protection of modern nuclear warheads and increases the survivability of conventional munitions in hustle environment. The most basic level to obtain insensitive munitions is the use of intrinsic insensitive energetic materials, either by synthesizing new, less sensitive crystalline materials or by improving the physical properties of existing sensitive materials. In light of the growing importance of insensitive munitions, this review paper brings out some potential insensitive energetic materials and plasticizers emphasizing their significant role in the development of futuristic IM formulations. This review also concisely brings out the recent work carried out globally, including India, on the development of advanced energetic materials and their insensitive energetic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. R. Doherty and R. L. Simpson, “A Comparative Evaluation of Several Insensitive High Explosives," in 28th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 1997, pp. 32.1–32.23.

  2. M. Alouaamari, M. H. Lefebvre, Ch. Perneel, and M. Herrmann, “Statistical Assessment Methods for the Sensitivity of Energetic Materials," Propell., Explos., Pyrotech. 33 (1), 60–65 (2008).

  3. J. P. Agrawal, High Energy Materials (WILEY-VCH Verlag GmbH, Weinheim, 2010).

  4. A. K. Sikder and N. Sikder, “A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications," J. Hazard. Mater.112 (1-2), 1–15 (2004).

  5. P. F. Pagoria, G. S. Lee, A. R. Mitchell, and R. D. Schmidt, “A Review of Energetic Materials Synthesis," Thermochim. Acta384, 187–204 (2002).

  6. M. B. Talawar, R. Sivabalan, M. Anniyappan, et al., “Emerging Trends in Advanced High Energy Materials," Fiz. Goreniya Vzryva43 (1), 72–85 (2007) [Combust., Expl., Shock Waves43 (1), 62–72 (2007)].

  7. D. M. Badgujar, M. B. Talawar, and P. P. Mahulikar, “Review of Promising Insensitive Energetic Materials," Centr. Eur. J. Energ. Mater. 14 (4), 821–843 (2017).

  8. R. Vijayalakshmi, S. Radhakrishnan, R. S. Patil, et al., “Particle Size Management Studies on Spherical 3-nitro-1,2,4-triazol-5-one," Part. Part. Syst. Char.28, 57–63 (2011).

  9. S. A. Aubert, J. D. Corley, and J. G. Glenn, “Development of TNTO Composite Explosives," WL-TR-92-7073 (Wright Laboratory, Eglin Air Force Base, 1993).

  10. J. D. Corley and A. C. Stewart, “Fuzed Insensitive General Purpose Bomb Containing AFX-645," in Proc. Int. Symp. on Energ. Mater. Technol., September 24–27, Phoenix, 1995, pp. 98–103. (American Defence Preparedness Association, No. 680.)

  11. B. M. Kosowski and R. C. Taylor, “New Processing Aid and Emulsifier for Energetics," in 27th Int. Annu. Conf. of ICT, (Karlsruhe, Germany, 1996), pp. 152(1)–152(11).

  12. T. S. Sumrall and F. L. Niceville, “Large Scale Thermal Sensitivity Results of a Melt Castable General Purpose Insensitive High Explosive," in Proc. 23rd Int. Pyrotech. Seminar. (1997), pp. 822–846.

  13. L. T. Wilson, D. R. Reedal, and B. M. Simpson, “Comparison of PBXW-126 and PBXC-129 for Use in Large Fragmenting Warheads," inInsensitive Munitions and Energ. Mater. Technol. Symp., 1997 (National Defense Industrial Association, Event, No 854).

  14. A. S. Cumming, S. E. Gaulter, and C. J. Leach, “The Formulation of an Insensitive High Explosive Based on HMX, NTO and PolyNIMMO," in Insensitive Munitions Technol. Symp., Virginia, USA. 1994, pp. 376–382. (American Defense Preparedness Association, No 471.)

  15. C. J. Leach, B. J. Garaty, and K. J. Cox, “Progress in Aluminized IHE," in Technical Panel W-4. Energ. Mater. and Propul. Technol., 22nd Meeting (United Kingdom, 1997), pp. 1–8.

  16. T. Mukundan, J. K. Nair, G. N. Purandare, et al., “Low Vulnerable Sheet Explosive Based on 3-nitro-1,2,4-triazol-5-one," J. Propul. Power 22 (6), 1348–1352 (2006).

  17. C. Coulouarn, P. Lamy-Bracq, and S. Bulot, “Development of a New Pressable XP\(^{\circledR}\) Explosive Composition for Medium Caliber 656," in Proc. Int. Pyrotech. Seminar (37th EUROPYRO) (2011), pp. 54–62.

  18. W. A. Trzciński, S. Cudziło, S. Dyjak, and M. Nita, “A Comparison of Sensitivity and Performance Characteristics of Melt-Pour Explosives with TNT and DNAN Binder," in New Trends in Research of Energetic Materials: Proc. 15th Seminar (Pardubice, Czech Republic. 2012), Vol. 2, pp. 893–901.

  19. S. Radhakrishnan, R. Vijayalakshmi, T. S. Reddy, et al., “Effect of Particle Size and Shape of NTO on Micromeritic Characteristics and its Explosive Formulations," Powder Technol. 253, 276–283 (2014).

  20. R. Vijayalakshmi, S. Radhakrishnan, Shitole Pooja, et al., “Spherical 3-nitro-1,2,4-triazol-5-one (NTO) Based Melt-Cast Compositions: Heralding a New Era of Shock Insensitive Energetic Materials," RSC Adv. 5, 101647–101655 (2015).

  21. S. Nicolich, J. Niles, D. Doll, and, “Development of a Novel High Fragmentation/High Blast Melt Pour Explosive," inInsensitive Munitions and Energ. Mater. Technol. Symp. (IMEMTS 2003) (USA, 2003).

  22. A. Barrie, Bye Bye, TNT: New Generation of Explosives for the Army (Fox News, from Online (2013-03-26)).

  23. V. Fung, “Process Improvement and Optimization of Insensitive Explosive IMX-101," in Insensitive Munitions and Energ. Mater. Technol. Symp. (U.S. Army, 2012), S2DSEA2012-0148.

  24. H. Östmark, A. Langlet, H. Bergman, et al., “FOX-7—a New Explosive with Low Sensitivity and High Performance," in The 11th Int. Detonation Symp. (Colorado, 1998).

  25. D. C. Sorescu, J. A. Boatz, and D. L. Thompson, “Classical and Quantum-Mechanical Studies of Crystalline FOX-7 (1,1-diamino-2,2-dinitroethylene)," J. Phys. Chem. A105 (20), 5010–5021 (2001).

  26. H. Ostmark, H. Bergman, U. Bemm, et al., “2,2-Dinitro-ethene-1,1-diamine. Properties, Analysis and Scale Up,"in 32nd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2001), pp. 26.1–26.21.

  27. N. V. Latypov, J. Bergman, A. Langlet, et al., “Synthesis and Reactions of 1,1-diamino-2,2-dinitroethylene," Tetrahedron.54 (38), 11525–11536 (1998).

  28. M. Anniyappan, M. B. Talawar, G. M. Gore, et al., “Synthesis, Characterization and Thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its Salts," J. Hazard. Mater. 137 (2), 812–819 (2006).

  29. S. Eldsaeter, H. Edvinsson, M. Johansson, et al., “Formulation of PBX’s Based on 1,1-diamino-2,2-dinitroethylene (FOX-7)," in33rd Int. Annu. Conf. of ICT (Karlsruhe, 2002), pp. 63.1–63.14.

  30. A. Kretschmer, P. Gerber, and A. Happ, “Characterization of Plastic Bonded Explosive Charges Containing FOX-7," in 35th Int. Annu. Conf. of ICT (Karlsruhe, 2004), pp. 172.1–172.11.

  31. A. Orzechowski, D. Powała, A. Maranda, and B. Florczak, “1,1-Diamino-2,2-dinitroethylene as a Component of Plastic Bonded Explosives," in New Trends in Research of Energetic Materials: Proc. of 10th Seminar (Pardubice, Czech Republic., 2007), pp. 825–830.

  32. D. Powała, A. Orzechowski, A. Papliński, and A. Maranda, “Some Properties of PBX Containing FOX-7," in New Trends in Research of Energ. Mater., Proc. of 12th Seminar, (Pardubice, Czech Republic., 2009), pp. 781–786.

  33. H. R. Blomquist, “Reduced Smoke Gas Generant with Improved Mechanical Stability," US Patent No. 6.113.713 A (September 5, 2000).

  34. C. Vörde, S. Röstlund, C. Sjöqvist, and Å. Klaw, “Development of a Moisture Insensitive Gas Generating Composition," in 38th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2007), pp. 11.1–11.7.

  35. C. Collet, B. Le Roux, B. Mahe, and B. Nouguez, “FOX-7 Based Insensitive Cast PBX," in IMEMTS, May 11–14, 2009.

  36. D. Müller and W. Langlotz, in Treibladung: Eur. Pat. Appl. EP 2388244 A1 (November 23, 2011).

  37. W. A. Trzciński, S. Cudziło, Z. Chyłek, and L. Szymańczyk, “Detonation Properties and Thermal Behavior of FOX-7-Based Explosives," J. Energ. Mater. 31 (1), 72–85 (2013).

  38. P. Golding, I. Ridpath, M. Wanhatalo, et al., “Formulation and Initial Characterisation of a FOX-7 Polyphosphazene Based PBX," in 43rd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2012), pp. 2.1–2.12.

  39. H. Lips, S. Helou, H. Kentgens, et al., “Less Sensitive Smoke Reduced Rocket Propellants Based on FOX 7," in 43rd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2012), pp. 22.1–22.11.

  40. J. H. Lim and G. M. Byun, “Eco-Friendly Propellant Composition with Excellent Reliability, and Method for Manufacturing Propellant," KR Patent No. 2.012.137.643 A, Repub. Korean Kongkae Taeho Kongbo (December 24, 2012).

  41. A. I. Konashenkov, A. I. Sporykhin, N. M. Varenykh, et al., “High-Power Explosive Composition," RU Patent No. 2485079 C1 (June 20, 2013).

  42. K.-W. Naumann, K. Schmid, J. Ramsel, and R. Stierle, “Gel-Form Fuel," Eur. Patent No. DE 102011056581 7A, EP 2607337 A1 (June 26, 2013).

  43. V. S. Mishra, S. R. Vadali, R. K. Garg, et al., “Studies on FOX-7 Based Melt Cast High Explosive Formulations," Centr. Eur. J. Energ. Mater. 10, 569–580 (2013).

  44. A. Belaada, W. A. Trzciński, Z. Chyłek, et al., “A Melt-Cast Composition Based on NTO and FOX-7," Centr. Eur. J. Energ. Mater.13 (4), 882–902 (2016).

  45. V. S. Mishra, S. R. Vadali, A. L. Bhagat, et al., “Studies on NTO-, FOX-7- and DNAN-based Melt Cast Formulations," Centr. Eur. J. Energ. Mater. 14 (2), 1–15 (2017).

  46. W. A. Trzciński and A. Belaada, “1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7)—Properties and Formulations (a Review)," Centr. Eur. J. Energ. Mater. 13 (2), 527–544 (2016).

  47. K. A. Elsharkawy and G. Lin, “1,1-Diamino-2,2-dinitroethene (FOX-7) Based Sheet Explosive Material with Glycidyl Azide Polymer in Comparison with RDX Based System," Int. J. Eng. Res. Technol. (IJERT) 6 (12), (2017).

  48. S. M. Dahiwale, C. Bhongale, and S. N. Asthana, “Ballistic Studies on Fox-7 Based Triple Base Propellant for High Calibre Gun," Acad. J. Polym. Sci. 2 (4), (2019); DOI: 10.19080/AJOP.2019.02.555593.

  49. A. Langlet, H. Östmark, and N. Wingborg, “Method of Preparing Dinitramidic Acid and Salts Thereof," Int. Patent WO 1997006099 A1 (February 20, 1997).

  50. H. Ostmark, A. Langlet, H. Bergman, et al., “FOX-7—A New Explosive with Low Sensitivity and High Performance," in Proc.of the 11th Int. Detonation Symp., 1998, p. 807 (2000). (Office of Naval Research, Arlington, VA; ONR 33300-5.)

  51. H. R. Blomquist, “Gas Generating Composition Comprising Quanylurea Dinitramide," US Patent No. 6.117.255 A (September 12, 2000).

  52. S. Persson and C. Sjöqvist, “Composite Gas-Generating Material for Gas-Actuated Car Safety Devices," Patent WO 2.000.069.792 (May 4, 2000).

  53. J. Pang, J. Wang, R. Zhang, and B. Xie, “Application of CL-20, FOX-12 and DNTF in CMDB Propellant," Houshayao Xuebao28, 19–21 (2005).

  54. H. Östmark, U. Bemm, H. Bergman, and A. Langlet, “N-Guanylurea-Dinitramide: A New Energetic Material with Low Sensitivity for Propellants and Explosives Applications," Termochim. Acta 384 (1/2), 253–259 (2002).

  55. H. Östmark, U. Bemm, A. Langlet, et al., “The Properties of Ammonium Dinitramide (ADN): Part 1. Basic Properties and Spectroscopic Data," J. Energ. Mater. 18, 123 (2000).

  56. D. Mueller, “Insensitive Gun Propellants with Low Temperature Coefficient Based on DND," in 35th Proc. Int. Pyrotech. Seminar.539–545 (2008) (IPSUSA Seminars, Inc.).

  57. D. Badgujar and M. Talawar, “Thermal Analysis and Sensitivity Studies on Guanylurea Dinitramide (GUDN or FOX-12) Based Melt Cast Explosive Formulations," Centr. Eur. J. Energ. Mater.14 (2), 296–303 (2017).

  58. A. T. Nielsen, A. P. Chaafin, and S. L. Chriostian, “Synthesis of Polyazapolycyclic Caged Polynitramines," Tetrahedron.54, 11793–11812 (1998).

  59. P. C. Braithwaite, R. L. Hatch, K. Lee, and R. B. Wardle, “Development of High Performance CL-20 Explosive Formulations," in 29th Int. Annu. Conf. of ICT, Karlsrnhe (Germany, 1998), pp. 4.1–4.7.

  60. M. Golfier, H. Graindorge, Y. Longevialle, and H. Maee, “New Energetic Molecules and their Applications in Energetic Materials," in 29th Int. Annu. Conf. of ICT(Karlsruhe, Germany, 1998), pp. 3.1–3.18.

  61. S. V. Sysolyatin, A. A. Lobanova, Yu. T. Chernikova, and G.V. Sakovich, “Methods of Synthesis and Properties of Hexanitrohexaazaisowurtzitane," Usp. Khimii 74 (8), 830–838 (2005) [Russian Chem. Rev. 74, 757 (2005)].

  62. R. B. Wardle and W. W. Edwards, “Improved Hydrogenolysis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.0\(^{5,9}\).0\(^{3,11}\)]dodecane," Patent WO 1997020785 A1 (June 12, 1997).

  63. J. P. Agrawal, “Some New High Energy Materials and their Formulations for Specialized Applications," Propell., Explos., Pyrotech. 30 (5), 316–328 (2005).

  64. U. R. Nair, R. Sivabalan, G. M. Gore, et al., “Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-Based Formulations (Review)," Fiz. Goreniya Vzryva 41 (2), 3–16 (2005) [Combust., Expl., Shock Waves 41 (2), 121–132 (2005)].

  65. K. E. Lee, R. L. Hatch, and P. Braithwaite, “Method for Making High Performance Explosive Formulations Containing CL-20," US Patent No. 6.217.799 B1 (April 17, 2001).

  66. S. R. Bircher, P. Mader, and J. Mathieu, “Properties of CL-20 Based High Explosives," in29th Int. Annu. Conf. of ICT(Karlsruhe, Germany, 1998), pp. 94.1–94.14.

  67. M. L. Chan and A. D. Turner, “Preparation of Fine Particulate CL-20," US Patent No. 5.712.511 A (January 27, 1998).

  68. S. Thiboutot, P. Brousseau, G. Ampleman, et al., “Potential Use of CL-20 in TNT/ETPE-based Melt Cast Formulations," Propell., Explos., Pyrotech. 33, 103 (2008).

  69. S. Singh, Q. S. M. Kwok, C. M. Badeen, et al., “Compatibility of CL-20 with TNT and GAP-based ETPE," in 38th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2007), pp. 131.1.

  70. M. J. Mezger, S. M. Nicolich, D. A. Geiss, et al., “Performance and Hazard Characterization of CL-20 Formulations," in 30th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 1999), pp. 4.1–4.14.

  71. D. Mueller, “New Gun Propellant with CL-20," Propell., Explos., Pyrotech. 24 (3), 176–181 (1999).

  72. R. B. Wardle, P. C. Braithwaite, A. C. Haaland, et al., “High Energy Oxetane/HNIW Gun Propellant," in 27th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 1996), pp. 52.1–52.7.

  73. U. R. Nair, G. M. Gore, R. Sivabalan, et al., “Studies on Advanced CL-20 Based Composite Modified Double-Base Propellants," J. Propul. Power. 20, 952–955 (2004).

  74. M. L. Chan, D. T. Bui, G. Meyers, and A. Turner, “Castable Thermobaric Explosive Formulations," US Patent No. 6.969.434 B1 (November 29, 2005).

  75. S. M. Nicolich, C. Capellos, W. A. Balas, et al., “High-Blast Explosive Compositions Containing Particulate Metal," US Patent No. 8.168.016 B1 (May 1, 2012).

  76. L. A. Andreevskikh, S. A. Vakh mistrov, O. V. Svirskii, et al., “Composite Explosive Substance and Preparation Method Thereof," RU Patent No. 2417971 C1 (May 10, 2011).

  77. S. Dumas, J. Y. Gauvrit, and P. Lanteri, “Determining the Polymorphic Purity of \(\varepsilon\)-CL-20 Contaminated by other Polymorphs through the Use of FTIR Spectroscopy with PLS Regression," Propell., Explos., Pyrotech.37, 230–234 (2012).

  78. M. Ghosh, V. Venkatesan, M. Snehal, et al., “Probing Crystal Growth of \(\varepsilon\)- and \(\alpha\)-CL-20 Polymorphs Via Metastable Phase Transition Using Microscopy and Vibrational Spectroscopy of CL-20," Cryst. Growth Des.14, 5053–5063 (2014).

  79. Y. Wei, J. Wang, C.-W. An, et al., “GAP/CL-20-Based Compound Explosive: A New Booster Formulation Used in a Small-Sized Initiation Network," J. Energ. Mater. 35, 53–62 (2017).

  80. S. K. Jangid, M. B. Talawar, M. K. Singh, et al., “Experimental Studies on Advanced Sheet Explosive Formulations Based on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and Hydroxyl Terminated Polybutadiene (HTPB), and Comparison with a RDX-based System," Centr. Eur. J. Energ. Mater. 13(1), 135–147 (2016).

  81. V. T. Ramakrishnan, M. Vedachalam, and J. H. Boyer, “4, 10-Dinitro-2, 6, 8, 12-tetraoxa-4, 10-diazatetracyclo [5.5.0.0\(^{5,9}\).0\(^{3,11}\)]dodecane," Heterocycles 31, 479–480 (1990).

  82. Ya. Bayat and V. Azizkhani, “Synthesis of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX) Using Heteropolyacids as Efficient and Recyclable Heterogeneous Catalysts," J. Energ. Mater. 30, 209–219 (2012).

  83. P. Maksimowski and T. Golofit, “4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.0\(^{5.9}\)0\(^{3.11}\)]dodecane Synthesis," J. Energ. Mater. 31 (3), 224–237 (2013).

  84. E.-Ch. Koch, “Weapon for Selective Causation of a Detonation or Deflagration," Eur. Patent No. EP 2151422 A2 (February 10, 2010).

  85. L. J. Martins, R. B. Cragun, G. K. Lund, et al., “Method of Making Multi-Base Propellants from Pelletized Nitrocellulose," US Patent No. 6.692.655 B1 (February 17, 2004).

  86. R. L. McKenney, Jr., J. F. Leahy, S. T. Parkin, and T. R. Krawietz, “Plasticized, Wax-Based Binder System for Melt Castable Explosives," US Patent No. 6.641.683 B1 (November 04, 2003).

  87. D. J. Lewis, D. E. Olander, and M. C. Magenot, “Gas Generating Device," Patent No. WO 2002022214 A2 (March 21, 2002).

  88. P. C. Braithwaite, G. K. Lund, and R. B. Wardle, “High Performance Pressable Explosive Compositions," US Patent No. 5.587.553 A (December 24, 1996).

  89. I. A. Wallace, II, P. C. Braithwaite, and J. B. Neidert, “Plastisol Explosive," US Patent No. 5.468.313 A (November 21, 1995).

  90. D. W. Doll, J. M. Hanks, T. K. Highsmith, and G. K. Lund, “Reduced Sensitivity Melt-Cast Explosives," Patent No. WO 2001046092 A1 (June 28, 2001).

  91. M. B. Deshmukh, A. U. Borse, P. P. Mahulikar, and D. S. Dalal, “An Improved and Scalable Synthesis of Insensitive High Explosive 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX)," Org. Process Res. Dev. 20 (7), 1363–1369 (2016).

  92. S. Matsuzaki, E. Yano, S. Suzuki, et al., “Reduced Sensitivity RDX (RS-RDX): Effects of Crystal Quality and Shape on the Shock Sensitivity of RS-RDX Based PBXN-109 Formulation," inProc. of 38th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2007), pp. 130/1–130/10.

  93. O. H. Johansen, J. D. Kristiansen, R. Gjersoe, et al., “RDX and HMX with Reduced Sensitivity Towards Shock Initiation—RS-RDX and RS-HMX," Propell., Explos., Pyrothech. 33 (1), 20–24 (2008).

  94. A. E. D. M. Van der Heijden, Y. L. M. Creyghton, E. Marino,et al., “Energetic Materials: Crystallization, Characterization and Insensitive Plastic Bonded Explosives," Propell., Explos., Pyrotech. 33, 25–32 (2008).

  95. R. Hudson, P. P. Gill, P. Q. Flower, and A. S. Cumming, “Assessment of RDX Crystal Morphology and Defects," in 41st Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2010), pp. 73.1–73.15.

  96. S. Matsuzaki, S. Suzuki, Y. Suzuki, and Y. Kato, “Effect of Crystal Quality of Fine RDX Particle on the Shock Sensitivity of Cast Cured PBX Formulation Based on RS-RDX," in 39th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2008), pp. 102.1–102.9.

  97. S. Matsuzaki, A. S. Fujigaki, and Yu. Kato, “Aging Evaluations of RS-RDX and PBX Formulations Based on RS-RDX," in 40th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2009), pp. 76.1–76.7.

  98. I. Plaksin, J. Gois, J. Campos, et al., “Effect of Aluminum Additives and the RDX Crystal Quality on the Scale of Localizations/Cellular Structure of the Detonation Reaction Zone: Conventional PBXs vs. RS-PBXs," in 39th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2008), pp. 103.1–103.12.

  99. R. J. Hudson and Ph. P. Gill, “Multi-Person Assessment of RDX Crystal Morphology Using the RS-RDX Round Robin Method," inNew Trends in Research of Energetic Materials, Proc. of 14th Seminar (Pardubice, Czech Republic., 2011), Vol. 1, pp. 237–245.

  100. P. Gerber, “Properties of Insensitive Octogen," in37th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2006), pp. 51.1–51.8.

  101. A. E. D. M. Van der Heijden and R. H. B. Bouma, “Crystallization and Characterization of RDX, HMX, and CL-20," Cryst. Growth Des.4 (2), 999–1007 (2004).

  102. T. D. Tran, P. F. Pagoria, D. M. Hoffman, et al., “Characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) As an Insensitive High Explosive Material," in 33rd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2002), pp. 45.1–45.16.

  103. S. Jing, Y. Liu, D. Liu, and J. Guo, “Research on a New Synthesis of LLM-105 Using N-nitroso-bis(cyanomethyl)amine," Centr. Eur. J. Energ. Mater. 13 (1), 21–32 (2016).

  104. Ph. Pagoria, M.-X. Zhang, N. Zuckerman, et al., “Synthetic Studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) from Discovery to Multi-Kilogram Scale," Propell., Explos., Pyrotech.42, 1–14 (2017).

  105. R. K. Weese, A. K. Burnham, H. C. Turner, and T. D. Tran, “Exploring the Physical, Chemical and Thermal Characteristics of a New Potentially Insensitive High Explosive RX-55-AE-5," J. Therm. Anal. Calorim. 89, 465–473 (2007).

  106. R. J. Cramer, S. Peters, R. Simmons, and S. Mitchell, “Energetic Deterrent Coating for Gun Propellant," US Patent No. 6.345.577 (February 12, 2002).

  107. W.-F. Yu, L.-G. Liao, F.-L. Chen, et al., “Occupational Toxicological Characteristics of LLM-105 Explosives," Int. J. Ecotoxicol. Ecobiol. 1 (3), 88-93 (2016).

  108. R. Damavarapu, C. R. Surapaneni, N. Gelber, et al., “Melt-Cast Explosive Material," US Patent No. 70304164 B1 (December 4, 2007).

  109. R. Duddu, M.-X. Zhang, R. Damavarapu, and N. Gelber, “Molten-State Nitration of Substituted Imidazoles: New Synthetic Approaches to the Novel Melt-Cast Energetic Material, 1-methyl-2,4,5-trinitroimidazole," Synthesis 17, 2859–2864 (2011).

  110. X.-F. Su, X.-L. Cheng, Ch.-M. Meng, and X.-L. Yuan, “Quantum Chemical Study on Nitroimidazole, Polynitroimidazole and Their Methyl Derivatives," J. Hazard. Mater. 161 (1), 551–558 (2008).

  111. R. Damavarapu, N. Gelber, R. Surapaneni, et al., “Novel Melt-Cast Explosive Material: 1-methyl-2,4,5-trinitroimidazole(MTNI)," inNew Trends in Research of Energetic Materials, Proc. of the 12th Seminar (Pardubice, Czech Republic, 2009), Pt. 1, pp. 109–114.

  112. M. Anniyappan, K. Vijay Varma, R. S. Amit, and J. K. Nair, “1-methyl-2,4,5-trinitroimidazole (MTNI), a Melt-Cast Explosive: Synthesis and Studies on Thermal Behavior in Presence of Explosive Ingredients," J. Energ. Mater. 38 (1), 111–125 (2020); DOI: org/10.1080/07370652.2019.1669735.

  113. B. T. Fedoroff and O. E. Sheffield, Encyclopedia of Explosives and Related Items (Picatinny Arsenal, Dover, 1966), Vol. 3, pp. C616.

  114. M. W. Smith and J. P. Lu, Aging of the Insensitive Explosive, ARX-4024, DSTO Systems Sciences Laboratory, Edinburgh, 2004).

  115. L. Wöhler and I. O. Wenzelberg, “Neues zur Schlagempfindlichkeit der Explosivstoffe (New Test for Impact Sensitivity of Explosives)," Angew. Chemie 46, 175 (1933).

  116. S. Nicolich, J. Niles, D. Doll, et al., “Development of a Novel High Fragmentation/High Blast Melt Pour Explosive," inInsensitive Munitions and Energ. Mater. Technol. Symp. (IMEMTS 2003).

  117. A. Provatas and C. Wall, “Thermal Testing of 2,4-dinitroanisole (DNAN) As a TNT Replacement for Melt-Cast Explosives," in42nd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2011), pp. 6.1–6.12.

  118. E. M. Lent, L. C. Crouse, and S. M. Wallace, “Oral Toxicity of 2,4-dinitroanisole in Rats," Int. J. Toxicol. 35, 692–711 (2016).

  119. M. Gobel, K. Karaghiosoff, T. M. Klapotke, et al., “Nitrotetrazolate-2N-Oxides and the Strategy of N-Oxide Introduction," J. Am. Chem. Soc. 132, 17216–17226 (2010).

  120. N. Fischer, D. Fischer, T. M. Klapotke, et al., “Pushing the Limits of Energetic Materials—The Synthesis and Characterization of Dihydroxyammonium 5,50-bistetrazole-1,10-diolate," J. Mater. Chem. 22, 20418–20422 (2012).

  121. T. M. Klapötke, Chemistry of High-Energy Materials(Walter de Gruyter, 2012).

  122. S. Nandagopal, S. Singh, R. P. K. Adak, et al., “Green Energetic Material-TKX-50: Evaluation in Composite Propellant Formulation Based on HTPB/AP/Al," in 47th Int. Annu. Conf. of ICT(Karlsruhe, Germany, 2016).

  123. H.-F. Huang, Y.-M. Shi, and J. Yang, “Compatibility Study of Dihydroxylammonium 5,5\('\)-bistetrazole-1,1\('\)-diolate (TKX-50) with Some Energetic Materials and Inert Materials," J. Energ. Mater. 33, 66–72 (2015).

  124. S. Ma, Y.-J. Li, Y. Li, and Y.-J. Luo, “Research on Structures, Mechanical Properties, and Mechanical Responses of TKX-50 and TKX-50 Based PBX with Molecular Dynamics," J. Mol. Model.22, 43 (2016).

  125. V. K. Golubev and T. M. Klapötke, “Comparative Analysis of Shock Wave Action of TKX-50 and Some Other Explosives on Various Barriers," in New Trends in Research of Energetic Materials, Proc. 17th Seminar (Pardubice, Czech Republic, 2014), P. 529.

  126. M.-N. Zhou, Sh.-S. Chen, D.-X. Wang, et al., “A Comparative Study of Performance between TKX-50-Based Composite Explosives and Other Composite Explosives," J. Energ. Mater. 37, 162–173 (2019).

  127. Y.-H. Yu, S.-S. Chen, T.-J. Li, et al., “Study on a Novel High Energetic and Insensitive Munitions Formulation: TKX-50 Based Melt Cast High Explosive," RSC Adv. 7 (50), 31485–31492 (2017).

  128. V. P. Sinditskii, S. A. Filatov, V. I. Kolesov, et al., “Combustion Behavior and Physico-Chemical Properties of Dihydroxylammonium 5,5-bistetrazole-1,1-diolate (TKX-50)," Thermochim. Acta614, 85–92 (2015).

  129. J. L. Gottfried, T. M. Klapötke, and T. G. Witkowski, “Estimated Detonation Velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF Using the Laser-Induced Air Shock from Energetic Materials Technique," Propell., Explos., Pyrotech. 42 (4), 353–359 (2017).

  130. A. Provatas, “Energetic Polymers and Plasticisers for Explosive Formulations: A Review of Recent Advances," DSTO Aeronaut. Maritime Res. Lab. (2000).

  131. R. L. Simmons and C. M. Walsh, “Designing Advanced Gun Propellants with Improved Energy Release," in 32nd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2001), pp. 43.1–43.11.

  132. A. Randal and J. J. Mallay, “Stability and Performance Characteristics of NENA Materials and Formulations," inEnergetic Materials Technology, Proc. of the American Defence Preparedness Association (1992), p. 116.

  133. M. A. Bohn, “Determination of the Kinetic Data of the Thermal Decomposition of Energetic Plasticizers and Binders by Adiabatic Self Heating," Thermochim. Acta 337 (1/2), 121–139 (1999).

  134. D. Schmitt, P. Eyerer, and P. Elsner, “Insensitive High-Performance Energetic Materials—Applied Research for Optimized Products," Propell., Explos., Pyrotech. 22 (3), 109–111 (1997).

  135. D. D. Tzeng and M. L. Jones, “Low Cost Binder for IM Applications," in JANNAF Propulsion Meeting(1998), Vol. 1, pp. 97–99. (CPIA Publ., No 675.)

  136. M. Chan and A. Turner, “Insensitive High Energy Booster Propellant," US Patent No. 2002166612 A1 (November 14, 2002).

  137. T. K. Chakraborthy, K. C. Raha, B. Omprakash, and A. Singh, “A Study on Gun Propellants Based on Butyl-NENA," J. Energ. Mater.22 (1), 41–53 (2004).

  138. R. S. Damse, B. Omprakash, B. G. Tope, et al., “Study of N-n-butyl-N-(2-nitroxyethyl)nitramine in RDX Based Gun Propellant," J. Hazard. Mater. 167 (1-3), 1222–1225 (2009).

  139. H. Ritter, B. Baschung, and P. Franco, “Increase of Gun Performance Using Co-Layered Propellants Based on NENA Formulations," in8th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2007), Vol. 3, pp. 16/1–16/11.

  140. R. Skacel, J. Zigmund, Z. Akstein, et al., “Plastic Explosives with Energetic System," in New Trends in Research of Energetic Materials, Proc. of the 14th Seminar (Pardubice, Czech Republic. 2011), pp. 933–938.

  141. S. Wilker, R. Gjersøe, P. Stensland, and Ch. Becher, “Stability Analysis of \(n\)-butyl-nitratoethylnitramine (Bu-NENA)," Centr. Eur. J. Energ. Mater. 4 (3), 59–80 (2007).

  142. R. S. Damse and A. Singh, “Evaluation of Energetic Plasticizers for Solid Gun Propellant," Defence Sci. J. 58 (1), 86–93 (2008).

  143. K. P. C. Rao, A. K. Sikder, M. A. Kulkarni, and M. M. Bhalerao, “Studies on n-Butyl Nitroxyethylnitramine (\(n\)-BuNENA): Synthesis, Characterization and Propellant Evaluations," Propell., Explos., Pyrotech. 29 (2), 93–98 (2004).

  144. X. Qi, H. Li, Y. Zhao, and N. Yan, “Comparison of the Structural and Physical Properties of Nitrocellulose Plasticized by N-butyl-N-(2-nitroxy-ethyl) Nitramine and Nitroglycerin: Computational Simulation and Experimental Studies," J. Hazard. Mater.362, 303–310 (2019).

  145. R. A. Pesce-Rodriguez, F. J. Shaw, and R. A. Fifer, “Pyrolysis GC-FTIR Studies of a LOVA Propellant Formulation Series," J. Energ. Mater. 10, 221–250 (1992).

  146. G. Doriath, “Challenges in Propellants and Combustion: 100 Years after Nobel," in 4th Int. Symp. on Special Topics in Chemical Propulsion (Stockholm, 1997).

  147. H.-So. Kim, “Improvement of Mechanical Properties of Plastic Bonded Explosive Using Neutral Polymeric Bonding Agent," Propell., Explos., Pyrotech. 24 (2), 96–98 (1999).

  148. M. A. Bohn and S. Eisele, “Stability and Service Time Period Assessment of Novel Solid Rocket Propellant Formulations," in32nd Int. Annu. Conf. of ICT, Karlsruhe (Germany, 2001), pp. 152.1–152.13.

  149. K. Menke, S. Eisele, and M. Bohn, “Fast Burning Minimum Smoke Propellants Based on GAP/CL20," Insensitive Munitions and Energ. Mater. Technol. Symp. 2, 871–887 (2001).

  150. L. C. Warren and D. M. Thompson, “Conductive Polymers to Improve Propellant Insensitivity-Impact and Friction-Properties," US Patent No. 6.521.063 B1 (February 18, 2003).

  151. B. A. McDonald, “Study of the Effects of Aging under Humidity Control on the Thermal Decomposition of NC/NG/BTTN/RDX Propellants," Propell., Explos., Pyrotech. 36 (6), 576–583 (2011).

  152. W. Li, A.-M. Pang, and X. Guo, “Molecular Dynamics Simulation on Nanoaluminumbinder and Nanoaluminumplasticizer Blends of High Energy Solid Propellant Ingredients," in 41st Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2010), pp. li1.1–li1.10.

  153. Zh.-P. Huang, H.-Y. Nie, Y.-Y. Zhang, et al., “Migration Kinetics and Mechanisms of Plasticizers, Stabilizers at Interfaces of NEPE Propellant/HTPB liner/EDPM Insulation," J. Hazard. Mater.229-230, 251–257 (2012).

  154. D. Bhowmik, V. S. Sadavarte, V. D. Charbhe, and S. M. Pande, “Studies on Sensitivity of Nitrate Ester Plasticized Hydroxyl Terminated Prepolymer Based Energetic Solid Rocket Propellants," Centr. Eur. J. Energ. Mater. 14 (3), 605–620 (2017).

  155. L. Medard and M. Thomas, Mem. Poudres 36, 97 (1954).

  156. J. Zucker, B. Trask, and F. Costa, “Nitrocellulose Doublebase Propellant Containing Ternary Mixture of Nitrate Esters," US Patent No. 3.867.214 A (February 18, 1975).

  157. F. G. Crescenzo and R. L. Dow, “Gas Generator Compositions," US Patent No. 3.639.183 A (February 1, 1972).

  158. M. G. Baldwin and P. H. Gehlhaus, “High Energy Acrylic Prepolymer Propellants of Low Sensitivity," US Patent No. 3.785.887 A (January 15, 1974).

  159. D. Wion, “Manual Assist Terminal Applicator," US Patent No. 3.804.603 A (April 16, 1974).

  160. G. L. Griffith, “Tmetn-Inorganic Nitrate Explosives Blended with Aluminum," US Patent No. 3.580.753 A (May 25, 1971).

  161. G. Ampleman, P. Brousseau, E. Diaz, et al., “Insensitive Melt Cast Explosive Compositions Containing Energetic Thermoplastic Elastomers," Eur. Patent Appl. EP 1167324 A1 (January 2, 2002).

  162. Y. Oyumi, E. Kimura, Sh. Hayakawa, et al., “Insensitive Munitions (IM) and Combustion Characteristics of GAP/AN Composite Propellants," Propell., Explos., Pyrotech. 21 (5), 271–275 (1996).

  163. D. V. Pleshakov, N. N. Kondakova, and N. N. Il’icheva, “Thermodynamic Compatibility of Synthetic Polymers with High-Energy Plasticizers," in 43rd Int. Annu. Conf. of ICT(Karlsruhe, Germany, 2012), pp. 47.1–47.10.

  164. K. E. Newman, S. L. Jones, L. B. Leonard III, et al., “Method for Making Insensitive Enhanced Blast Explosive Molding Powders," US Patent No. 7.789.983 B1 (September 7, 2010).

  165. E. Landsem, T. L. Jensen, T. E. Kristensen, et al., “Isocyanate-Free and Dual Curing of Smokeless Composite Rocket Propellants," Propell., Explos., Pyrotech. 38 (1), 75-86 (2013).

  166. R. Meyer, J. Köhler, and A. Homburg, Explosives, (John Wiley and Sons, Weinheim, 2007).

  167. C. D. Hughes and R. J. Blau, “Double-Base Rocket Propellants, and Rocket Assemblies Comprising the Same," US Patent No. 6.607.617 B1 (August 18, 2000).

  168. W. H. Graham, R. E. Askins, and R. L. Stanley, “Nitrate Ester Stabilizing Layer for Propellant Grain," US Patent No. 5.398.612 A (March 21, 1995).

  169. Zh.-G. Xiao, S.-J. Ying, and F.-M. Xu, “Response of TEGDN Propellants to Plasma Ignition with the Same Magnitude of Ignition Energy as Conventional Igniters in an Interrupted Burning Simulator,"Propell., Explos., Pyrotech. 40 (4), 484–490 (2015); DOI: 10.1002/prep.201400215.

  170. R. S. Hamilton and R. B. Wardle, “Synthesis of bis(2,2-dinitropropyl)acetal (BDNPA)," US Patent No. 5.648.556 (July 15, 1997).

  171. Leu An Lu, Sh. M. Shen, B. H. Wu, et al., in 21st Int. Annu. Conf. of ICT (Karlsruhe, Germany, 1990), pp. 6/1–6/14.

  172. S. Eisele, L. Zimdahl, K. and Menke, “Fast Burning Rocket Propellants Based on Silicone and GAP Binder Formulation," in33rd Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2002), pp. 145.1–145.15.

  173. G. M. Gore, K. R. Tipare, C. N. Divekar, et al., “Studies on Effect of Incorporation of BDNPF/A on Burning Rates of RDX/AP/AI filled CMDB Propellants," J. Energ. Mater. 20 (3), 255–278 (2002).

  174. U. R. Nair, G. M. Gore, R. Sivabalan, et al., “Studies on Advanced CL-20-Based Composite Modified Double-Base Propellants," J. Propul. Power 20 (5), 952-955 (2004).

  175. K. Menke, P. B. Kempa, T. Keicher, et al., “High Energetic Composite Propellants Based on AP and GAP/BAMO Copolymers," in38th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2007), pp. 82.1–82.10.

  176. S. M. Nicolich, C. Capellos, W. A. Balas, et al., “High-Blast Explosive Compositions Containing Particulate Metal," US Patent No. 8.168.016 B1 (May 1, 2012).

  177. G. Bunte, H. Schuppler, and H. Krause, “Thermal Analytical Characterization of DNDA-5, DNDA-6 and DNDA-7 and Certain Binary and Ternary Mixtures," in 35th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2004), pp. 174.1–174.8.

  178. A. Kessler and W. Stein, “Investigations Concerning Modifications of the Mroperties of Loaded DNDA Propellant," in 36th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2005), pp. 51.1–51.11.

  179. M. A. Bohn and D. Mueller, “Insensitivity Aspects of NC Bonded and DNDA Plasticizer Containing Gun Propellants," in 37th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2006), pp. 47.1–47.11.

  180. G. Pauly and, R. Scheibel, “Burning Behavior of Nitramine Gun Propellants under the Influence of Pressure Oscillations," Propell., Explos., Pyrotech. 35 (3), 284–291 (2010).

  181. R. Skacel et al., “Plastic Explosives with Energetic Binding Systems," in New Trends in Research of Energetic Materials, Proc. of the 14th Seminar (Pardubice, Czech Republic, 2011), Vol. 2, pp. 933–938.

  182. A. M. A. Maraden et al., “BuNENA-DNDA57 Combined Energetic Plasticizer for Modified Cast Double Base Propellants," Centr. Eur. J. Energ. Mater. 15 (3), 485–500 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anniyappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anniyappan, M., Talawar, M.B., Sinha, R.K. et al. Review on Advanced Energetic Materials for Insensitive Munition Formulations. Combust Explos Shock Waves 56, 495–519 (2020). https://doi.org/10.1134/S0010508220050019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508220050019

Keywords

Navigation